Quasi-Wollaston-Prism for Terahertz Frequencies Fabricated by 3D Printing

In this letter, we present the design, fabrication, and characterization of a quasi-Wollaston prism for terahertz frequencies based on form birefringence. The prism uses the birefringence induced in a sub-wavelength layered plastic-air structure that produces refraction in different directions for different polarizations. The component was simulated using the finite-difference-time-domain method, fabricated by 3D printing and subsequently tested by terahertz time-domain spectroscopy showing a polarization separation around of 23° for frequencies below 400 GHz, exhibiting cross polarization power extinction ratios better than 1.6 × 10−3 at 200 GHz.

[1]  Peter Uhd Jepsen,et al.  Finite-difference time-domain analysis of time-resolved terahertz spectroscopy experiments , 2011 .

[2]  Martin Koch,et al.  THz Optics 3D Printed with TOPAS , 2016 .

[3]  Peter Uhd Jepsen,et al.  Bendable, low-loss Topas fibers for the terahertz frequency range. , 2009, Optics express.

[4]  Martin Koch,et al.  Fabrication of gradient-refractive-index lenses for terahertz applications by three-dimensional printing , 2016 .

[5]  M. Koch,et al.  Terahertz form birefringence. , 2010, Optics express.

[6]  Peter Uhd Jepsen,et al.  Reflection terahertz time-domain imaging for analysis of an 18th century neoclassical easel painting. , 2015, Applied optics.

[7]  E. Constable,et al.  3D Printed Terahertz Diffraction Gratings And Lenses , 2015 .

[8]  R. Leonhardt,et al.  3D-Printed Broadband Dielectric Tube Terahertz Waveguide with Anti-Reflection Structure , 2016, 2016 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD).

[9]  Martin Koch,et al.  Optical Properties of 3D Printable Plastics in the THz Regime and their Application for 3D Printed THz Optics , 2014 .

[10]  Ajay Nahata,et al.  Terahertz plasmonic waveguides created via 3D printing. , 2013, Optics express.

[11]  S. C. Corzo-Garcia,et al.  Quality control of leather by terahertz time-domain spectroscopy. , 2014, Applied optics.

[12]  R. Leonhardt,et al.  Terahertz pulse propagation in 3D-printed waveguide with metal wires component. , 2014, Optics express.

[13]  Broadband terahertz spectroscopy of the insulator-metal transition driven by coherent lattice deformation at the SmNi O 3 / LaAl O 3 interface , 2016, 1602.09026.

[14]  Daniel R. Grischkowsky,et al.  Highly sensitive terahertz measurement of layer thickness using a two-cylinder waveguide sensor , 2010 .

[15]  J. Federici,et al.  THz imaging and sensing for security applications—explosives, weapons and drugs , 2005 .

[16]  Yanfeng Li,et al.  Design of Broadband Porous-Core Bandgap Terahertz Fibers , 2016, IEEE Photonics Technology Letters.

[17]  M. Koch,et al.  Towards Industrial Inspection with THz Systems , 2016 .

[18]  R. Leonhardt,et al.  Metallic and 3D-printed dielectric helical terahertz waveguides. , 2015, Optics express.

[19]  Salih Ergün,et al.  Terahertz Technology For Military Applications , 2015 .

[20]  Kaori Fukunaga,et al.  THz Technology Applied to Cultural Heritage in Practice , 2016 .

[21]  E. Hendry,et al.  Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector , 2015, Science Advances.

[22]  D. Mittleman,et al.  A Maxwell's fish eye lens for the terahertz region , 2013 .

[23]  Tadao Nagatsuma,et al.  24 Gbit/s data transmission in 300 GHz band for future terahertz communications , 2012 .