Temperature distribution reconstruction in Czochralski crystal growth process

A mechanical geometric crystal growth model is developed to describe the crystal length and radius evolution. The crystal radius regulation is achieved by feedback linearization and accounts for parametric uncertainty in the crystal growth rate. The associated parabolic partial differential equation (PDE) model of heat conduction is considered over the time-varying crystal domain and coupled with crystal growth dynamics. An appropriately defined infinite-dimensional representation of the thermal evolution is derived considering slow time-varying process effects. The computational framework of the Galerkin's method is used for parabolic PDE order reduction and observer synthesis for temperature distribution reconstruction over the entire crystal domain. It is shown that the proposed observer can be utilized to reconstruct temperature distribution from boundary temperature measurements. The developed observer is implemented on the finite-element model of the process and demonstrates that despite parametric and geometric uncertainties present in the model, the temperature distribution is reconstructed with the high accuracy. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2839–2852, 2014

[1]  A. S. Jordan,et al.  An analysis of the derivative weight-gain signal from measured crystal shape: Implications for diameter control of GaAs , 1983, The Bell System Technical Journal.

[2]  Jeffrey J. Derby,et al.  Thermal-capillary analysis of Czochralski and liquid encapsulated Czochralski crystal growth: I. Simulation , 1986 .

[3]  G. Stephanopoulos,et al.  Dynamics and control of the Czochralski process: I. Modelling and dynamic characterization , 1987 .

[4]  Michael Gevelber,et al.  Dynamics and control of the Czochralski process III. Interface dynamics and control requirements , 1994 .

[5]  Mark J. Balas,et al.  Finite-dimensional control of distributed parameter systems by Galerkin approximation of infinite dimensional controllers☆ , 1986 .

[6]  Jeffrey J. Derby,et al.  Dynamics of liquid-encapsulated czochralski growth of gallium arsenide: Comparing model with experiment , 1989 .

[7]  Jan Winkler,et al.  Nonlinear model-based control of the Czochralski process III: Proper choice of manipulated variables and controller parameter scheduling , 2012 .

[8]  Talid Sinno,et al.  Modeling Microdefect Formation in Czochralski Silicon , 1999 .

[9]  Warren D. Seider,et al.  Model-predictive control of the Czochralski crystallization process. Part I. Conduction-dominated melt , 1997 .

[10]  Stevan Dubljevic,et al.  Control of parabolic PDEs with time-varying spatial domain: Czochralski crystal growth process , 2013, Int. J. Control.

[11]  Kazumfumi Lto,et al.  Finite-dimensional compensators for infinite-dimensional systems via Galerkin-type approximation , 1990 .

[12]  Antonios Armaou,et al.  Robust control of parabolic PDE systems with time-dependent spatial domains , 2001, Autom..

[13]  C.-Z. Xu,et al.  An observer for infinite-dimensional dissipative bilinear systems , 1995 .

[14]  Stevan Dubljevic,et al.  Order‐reduction of parabolic PDEs with time‐varying domain using empirical eigenfunctions , 2013 .

[15]  Joachim Deutscher,et al.  Finite-dimensional observer-based control of linear distributed parameter systems using cascaded output observers , 2011, Int. J. Control.

[16]  J. Derby,et al.  Thermal-capillary analysis of Czochralski and liquid encapsulated Czochralski crystal growth. II - Processing strategies , 1986 .

[17]  V. Kalaev,et al.  3D unsteady computer modeling of industrial scale Ky and Cz sapphire crystal growth , 2011 .

[18]  Jan Winkler,et al.  Nonlinear model-based control of the Czochralski process I: Motivation, modeling and feedback controller design , 2010 .

[19]  Hans Zwart,et al.  Luenberger boundary observer synthesis for Sturm–Liouville systems , 2010, Int. J. Control.

[20]  Jan Winkler,et al.  Nonlinear model-based control of the Czochralski process II: Reconstruction of crystal radius and growth rate from the weighing signal , 2010 .

[21]  M. Krstić,et al.  Backstepping boundary control of Burgers' equation with actuator dynamics , 2000 .

[22]  Stevan Dubljevic,et al.  Optimal control of convection–diffusion process with time-varying spatial domain: Czochralski crystal growth , 2011 .

[23]  Minxiu Qiu,et al.  Simulation aided hot zone design for faster growth of CZ silicon mono crystals , 2011 .

[24]  P. K. C. Wang FEEDBACK CONTROL OF A HEAT DIFFUSION SYSTEM WITH TIME‐DEPENDENT SPATIAL DOMAIN , 1995 .

[25]  P. Christofides,et al.  Crystal temperature control in the Czochralski crystal growth process , 2001 .

[26]  Warren D. Seider,et al.  Model-predictive control of the Czochralski crystallization process. Part II. Reduced-order convection model , 1997 .

[27]  Gregory Hagen,et al.  Spillover Stabilization in Finite-Dimensional Control and Observer Design for Dissipative Evolution Equations , 2003, SIAM J. Control. Optim..

[28]  Costas J. Spanos,et al.  Advanced process control , 1989 .

[29]  J. Derby,et al.  On the dynamics of Czochralski crystal growth , 1987 .

[30]  Stevan Dubljevic,et al.  Optimal boundary control of a diffusion–convection-reaction PDE model with time-dependent spatial domain: Czochralski crystal growth process , 2012 .

[31]  Robert A. Brown,et al.  Theory of transport processes in single crystal growth from the melt , 1988 .

[32]  Svein I. Sagatun,et al.  Exponential Stabilization of a Transversely Vibrating Beam by Boundary Control Via Lyapunov’s Direct Method , 2001 .

[33]  M. Krstić,et al.  Boundary Control of PDEs , 2008 .

[34]  P. Gresho,et al.  An integrated process model for the growth of oxide crystals by the Czochralski method , 1989 .

[35]  U. Gross,et al.  Automatic crystal pulling with optical diameter control using a laser beam , 1972 .

[36]  George Stephanopoulos,et al.  Dynamics and control of the Czochralski process II. Objectives and control structure design , 1988 .

[37]  Michael Gevelber,et al.  Dynamics and control of the Czochralski process IV. Control structure design for interface shape control and performance evaluation , 1994 .

[38]  György Szabó,et al.  Thermal strain during Czochralski growth , 1985 .

[39]  Jeffrey J. Derby,et al.  A finite element method for analysis of fluid flow, heat transfer and free interfaces in Czochralski crystal growth , 1989 .

[40]  P. K. C. Wang,et al.  Stabilization and control of distributed systems with time-dependent spatial domains , 1990 .

[41]  Jeffrey J. Derby,et al.  Finite-element methods for analysis of the dynamics and control of Czochralski crystal growth , 1987 .

[42]  Thierry Duffar,et al.  Crystal growth processes based on capillarity : czochralski, floating zone, shaping and crucible techniques , 2010 .

[43]  Xiao-Dong Li,et al.  Infinite-dimensional Luenberger-like observers for a rotating body-beam system , 2011, Syst. Control. Lett..