Deep 3D Capture: Geometry and Reflectance From Sparse Multi-View Images

We introduce a novel learning-based method to reconstruct the high-quality geometry and complex, spatially-varying BRDF of an arbitrary object from a sparse set of only six images captured by wide-baseline cameras under collocated point lighting. We first estimate per-view depth maps using a deep multi-view stereo network; these depth maps are used to coarsely align the different views. We propose a novel multi-view reflectance estimation network architecture that is trained to pool features from these coarsely aligned images and predict per-view spatially-varying diffuse albedo, surface normals, specular roughness and specular albedo. We do this by jointly optimizing the latent space of our multi-view reflectance network to minimize the photometric error between images rendered with our predictions and the input images. While previous state-of-the-art methods fail on such sparse acquisition setups, we demonstrate, via extensive experiments on synthetic and real data, that our method produces high-quality reconstructions that can be used to render photorealistic images.

[1]  Brent Burley Physically-Based Shading at Disney , 2012 .

[2]  Pieter Peers,et al.  Appearance-from-motion , 2014, ACM Trans. Graph..

[3]  Pieter Peers,et al.  Deep inverse rendering for high-resolution SVBRDF estimation from an arbitrary number of images , 2019, ACM Trans. Graph..

[4]  Horst Bischof,et al.  OctNetFusion: Learning Depth Fusion from Data , 2017, 2017 International Conference on 3D Vision (3DV).

[5]  Paul Graham,et al.  Acquiring reflectance and shape from continuous spherical harmonic illumination , 2013, ACM Trans. Graph..

[6]  Michael M. Kazhdan,et al.  Screened poisson surface reconstruction , 2013, TOGS.

[7]  Yan Lu,et al.  MVPNet: Multi-View Point Regression Networks for 3D Object Reconstruction from A Single Image , 2018, AAAI.

[8]  Min H. Kim,et al.  Simultaneous acquisition of polarimetric SVBRDF and normals , 2018, ACM Trans. Graph..

[9]  Vladlen Koltun,et al.  Color map optimization for 3D reconstruction with consumer depth cameras , 2014, ACM Trans. Graph..

[10]  Jian Wang,et al.  Reflectance Capture Using Univariate Sampling of BRDFs , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[11]  Jean Ponce,et al.  Accurate, Dense, and Robust Multiview Stereopsis , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Hao Li,et al.  PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[13]  Pieter Peers,et al.  Recovering shape and spatially-varying surface reflectance under unknown illumination , 2016, ACM Trans. Graph..

[14]  Stefan Roth,et al.  Matryoshka Networks: Predicting 3D Geometry via Nested Shape Layers , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[15]  Jaakko Lehtinen,et al.  Two-shot SVBRDF capture for stationary materials , 2015, ACM Trans. Graph..

[16]  Stephen Lin,et al.  DPSNet: End-to-end Deep Plane Sweep Stereo , 2019, ICLR.

[17]  Jan-Michael Frahm,et al.  Pixelwise View Selection for Unstructured Multi-View Stereo , 2016, ECCV.

[18]  Giljoo Nam,et al.  Practical SVBRDF acquisition of 3D objects with unstructured flash photography , 2018, ACM Trans. Graph..

[19]  Kalyan Sunkavalli,et al.  Learning to reconstruct shape and spatially-varying reflectance from a single image , 2018, ACM Trans. Graph..

[20]  Yasuyuki Matsushita,et al.  Self-Calibrating Deep Photometric Stereo Networks , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[22]  Jitendra Malik,et al.  Learning a Multi-View Stereo Machine , 2017, NIPS.

[23]  Kalyan Sunkavalli,et al.  Materials for Masses: SVBRDF Acquisition with a Single Mobile Phone Image , 2018, ECCV.

[24]  Kaiqi Huang,et al.  Fast End-to-End Trainable Guided Filter , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[25]  Michael Goesele,et al.  Shading-Aware Multi-view Stereo , 2016, ECCV.

[26]  Lu Fang,et al.  SurfaceNet: An End-to-End 3D Neural Network for Multiview Stereopsis , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[27]  David J. Kriegman,et al.  Photometric stereo with non-parametric and spatially-varying reflectance , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Leonidas J. Guibas,et al.  Learning Representations and Generative Models for 3D Point Clouds , 2017, ICML.

[29]  Long Quan,et al.  MVSNet: Depth Inference for Unstructured Multi-view Stereo , 2018, ECCV.

[30]  Wei Liu,et al.  Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images , 2018, ECCV.

[31]  Narendra Ahuja,et al.  DeepMVS: Learning Multi-view Stereopsis , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[32]  Robert T. Collins,et al.  A space-sweep approach to true multi-image matching , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[33]  J. Tenenbaum,et al.  MarrNet : 3 D Shape Reconstruction via 2 . 5 D Sketches , 2017 .

[34]  Kalyan Sunkavalli,et al.  Deep image-based relighting from optimal sparse samples , 2018, ACM Trans. Graph..

[35]  Kalyan Sunkavalli,et al.  Deep view synthesis from sparse photometric images , 2019, ACM Trans. Graph..

[36]  Xiao Li,et al.  Modeling surface appearance from a single photograph using self-augmented convolutional neural networks , 2017, ACM Trans. Graph..

[37]  Adrien Bousseau,et al.  Flexible SVBRDF Capture with a Multi‐Image Deep Network , 2019, Comput. Graph. Forum.

[38]  Brian Karis,et al.  Real Shading in Unreal Engine 4 by , 2013 .

[39]  Steven M. Seitz,et al.  Shape and spatially-varying BRDFs from photometric stereo , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[40]  Michael M. Kazhdan,et al.  Poisson surface reconstruction , 2006, SGP '06.

[41]  Richard A. Newcombe,et al.  DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[42]  Yann LeCun,et al.  Learning a similarity metric discriminatively, with application to face verification , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[43]  Kun Zhou,et al.  Simultaneous Localization and Appearance Estimation with a Consumer RGB-D Camera , 2016, IEEE Transactions on Visualization and Computer Graphics.

[44]  Jannik Boll Nielsen,et al.  Minimal BRDF sampling for two-shot near-field reflectance acquisition , 2016, ACM Trans. Graph..

[45]  Yong Yu,et al.  Sparse-as-possible SVBRDF acquisition , 2016, ACM Trans. Graph..

[46]  Jaakko Lehtinen,et al.  Differentiable Monte Carlo ray tracing through edge sampling , 2018, ACM Trans. Graph..

[47]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[48]  Jaakko Lehtinen,et al.  Reflectance modeling by neural texture synthesis , 2016, ACM Trans. Graph..

[49]  Adrien Bousseau,et al.  Single-image SVBRDF capture with a rendering-aware deep network , 2018, ACM Trans. Graph..

[50]  Kun Zhou,et al.  Efficient reflectance capture using an autoencoder , 2018, ACM Trans. Graph..

[51]  Ravi Ramamoorthi,et al.  A differential theory of radiative transfer , 2019, ACM Trans. Graph..

[52]  Carlos Hernandez,et al.  Multi-View Stereo: A Tutorial , 2015, Found. Trends Comput. Graph. Vis..

[53]  Lance Williams,et al.  Casting curved shadows on curved surfaces , 1978, SIGGRAPH.

[54]  Kai Han,et al.  PS-FCN: A Flexible Learning Framework for Photometric Stereo , 2018, ECCV.

[55]  Wojciech Matusik,et al.  A data-driven reflectance model , 2003, ACM Trans. Graph..

[56]  Todd E. Zickler,et al.  A coaxial optical scanner for synchronous acquisition of 3D geometry and surface reflectance , 2010, ACM Trans. Graph..

[57]  Kaiming He,et al.  Group Normalization , 2018, ECCV.