Estimating Multiple Consumer Segment Ideal Points from Context-Dependent Survey Data

Previous research in marketing and consumer research has shown that consumers/households often possess multiple ideal points in a given product/service category. In such cases, traditional segmentation and positioning models that estimate a single ideal point per individual/segment may render an inaccurate portrayal of the true underlying utility functions of such consumers/segments and the resulting market structure. We propose a new clusterwise multiple‐ideal‐point spatial methodology that estimates multiple ideal points at the market segment level while simultaneously determining the market segments' composition of consumers, as well as the corresponding joint space.

[1]  Kurt A. Carlson,et al.  Improving Preference Assessment: Limiting the Effect of Context Through Pre-exposure to Attribute Levels , 2006, Manag. Sci..

[2]  M. Wedel,et al.  Market Segmentation: Conceptual and Methodological Foundations , 1997 .

[3]  R. Belk An Exploratory Assessment of Situational Effects in Buyer Behavior , 1974 .

[4]  Jack K. H. Lee,et al.  A Multiple Ideal Point Model: Capturing Multiple Preference Effects from within an Ideal Point Framework , 2001 .

[5]  E. Feigenbaum Simon, Herbert A. , 2006 .

[6]  H. Simon,et al.  A Behavioral Model of Rational Choice , 1955 .

[7]  Wayne S. DeSarbo,et al.  Three-Way Metric Unfolding , 1981 .

[8]  J. Carroll,et al.  A Feature-Based Approach to Market Segmentation via Overlapping K-Centroids Clustering , 1997 .

[9]  Michael R. Hagerty,et al.  A Deterministic-Type Model of Consumer Choice , 1980 .

[10]  Ronald E. Miller Optimization: Foundations and Applications , 1999 .

[11]  Wayne S. DeSarbo,et al.  A simulated annealing methodology for clusterwise linear regression , 1989 .

[12]  Patrick J. F. Groenen,et al.  Visualizing Dependence of Bootstrap Confidence Intervals for Methods Yielding Spatial Configurations , 2006 .

[13]  P. Arabie,et al.  Overlapping Clustering: A New Method for Product Positioning , 1981 .

[14]  Barbara E. Kahn,et al.  Technical Note---Aggregating Individual Purchases to the Household Level , 1986 .

[15]  R. Belk Situational Variables and Consumer Behavior , 1975 .

[16]  Allan D. Shocker,et al.  A Customer-oriented Approach for Determining Market Structures , 1984 .

[17]  H. Simon,et al.  Invariants of human behavior. , 1990, Annual review of psychology.

[18]  Robert Lazich Market Share Reporter , 2003 .

[19]  R. A. Harshman,et al.  Data preprocessing and the extended PARAFAC model , 1984 .

[20]  Allan D. Shocker,et al.  Goal-Derived Categories and the Antecedents of Across-Category Consideration , 1996 .

[21]  Wayne S. DeSarbo,et al.  A Constrained Unfolding Methodology for Product Positioning , 1986 .

[22]  W. DeSarbo,et al.  Three-way metric unfolding via alternating weighted least squares , 1985 .

[23]  M. Wedel,et al.  Consumer benefit segmentation using clusterwise linear regression , 1989 .

[24]  M. F. Luce,et al.  Constructive Consumer Choice Processes , 1998 .

[25]  Joel S. Dubow Occasion-Based vs. User-Based Benefit Segmentation: A Case Study , 1992 .

[26]  Sunil Gupta,et al.  Preference aggregation and repeat buying in households , 1993 .

[27]  A. Tversky,et al.  Loss Aversion in Riskless Choice: A Reference-Dependent Model , 1991 .

[28]  Wayne Stewart DeSarbo Three-way unfolding and situational dependence in consumer preference analysis , 1978 .

[29]  George S. Day,et al.  An Exploratory Study of the Influences of Usage Situation on Perceptions of Product-Markets , 1978 .