Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative

In this paper, the Crank-Nicolson (CN) difference scheme for the coupled nonlinear Schrodinger equations with the Riesz space fractional derivative is studied. The existence of this difference solution is proved by the Brouwer fixed point theorem. The stability and convergence of the CN scheme are discussed in the L"2 norm. When the fractional order is two, all those results are in accord with the difference scheme developed for the classical non-fractional coupled nonlinear Schrodinger equations. Some numerical examples are also presented.

[1]  Fawang Liu,et al.  Novel Numerical Methods for Solving the Time-Space Fractional Diffusion Equation in Two Dimensions , 2011, SIAM J. Sci. Comput..

[2]  I. Turner,et al.  Numerical methods for fractional partial differential equations with Riesz space fractional derivatives , 2010 .

[3]  Fawang Liu,et al.  Novel numerical methods for solving the time-space fractional diffusion equation in 2D , 2011 .

[4]  Fawang Liu,et al.  Galerkin finite element approximation of symmetric space-fractional partial differential equations , 2010, Appl. Math. Comput..

[5]  I. Turner,et al.  Numerical Approximation of a Fractional-In-Space Diffusion Equation, I , 2005 .

[6]  Manuel Duarte Ortigueira,et al.  Riesz potential operators and inverses via fractional centred derivatives , 2006, Int. J. Math. Math. Sci..

[7]  Palle E. T. Jorgensen,et al.  C*-algebras generated by partial isometries , 2007, 0712.2433.

[8]  Jie Xin,et al.  Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation , 2008, Appl. Math. Comput..

[9]  Xiaoyi Guo,et al.  Some physical applications of fractional Schrödinger equation , 2006 .

[10]  Ludwig Gauckler,et al.  Nonlinear Schrödinger Equations and Their Spectral Semi-Discretizations Over Long Times , 2010, Found. Comput. Math..

[11]  Fawang Liu,et al.  Numerical approximations and solution techniques for the space-time Riesz–Caputo fractional advection-diffusion equation , 2011, Numerical Algorithms.

[12]  N. Laskin Fractional quantum mechanics and Lévy path integrals , 1999, hep-ph/9910419.

[13]  Jie Xin,et al.  The global solution for a class of systems of fractional nonlinear Schrödinger equations with periodic boundary condition , 2011, Comput. Math. Appl..

[14]  Fawang Liu,et al.  A computationally effective alternating direction method for the space and time fractional Bloch-Torrey equation in 3-D , 2012, Appl. Math. Comput..

[15]  Jian-Qiang Sun,et al.  Multi-symplectic methods for the coupled 1D nonlinear Schrödinger system , 2003 .

[16]  Bülent Karasözen,et al.  Multi-symplectic integration of coupled non-linear Schrödinger system with soliton solutions , 2009, Int. J. Comput. Math..

[17]  M. Radziunas,et al.  On Convergence and Stability of the Explicit Difference Method for Solution of Nonlinear Schrödinger Equations , 1999 .

[18]  M. S. Ismail A fourth-order explicit schemes for the coupled nonlinear Schrödinger equation , 2008, Appl. Math. Comput..

[19]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[20]  Fawang Liu,et al.  Numerical Methods for the Variable-Order Fractional Advection-Diffusion Equation with a Nonlinear Source Term , 2009, SIAM J. Numer. Anal..

[21]  Fawang Liu,et al.  A second-order accurate numerical approximation for the Riesz space fractional advection-dispersion equation , 2012 .

[22]  Luming Zhang,et al.  Analysis of a symplectic difference scheme for a coupled nonlinear Schrödinger system , 2009, J. Comput. Appl. Math..

[23]  V. E. Tarasov Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media , 2011 .

[24]  Jorge Fujioka,et al.  Fractional optical solitons , 2010 .

[25]  Luming Zhang,et al.  New conservative difference schemes for a coupled nonlinear Schrödinger system , 2010, Appl. Math. Comput..

[26]  P. Amore,et al.  Collocation method for fractional quantum mechanics , 2009, 0912.2562.

[27]  I. Turner,et al.  A novel numerical approximation for the space fractional advection-dispersion equation , 2014 .

[28]  Fawang Liu,et al.  The fundamental solution and numerical solution of the Riesz fractional advection–dispersion equation , 2008 .

[29]  Zhi-Zhong Sun,et al.  On the L∞ convergence of a difference scheme for coupled nonlinear Schrödinger equations , 2010, Comput. Math. Appl..

[30]  B. Reichel,et al.  Coupled nonlinear Schrödinger equations in optic fibers theory , 2009 .

[31]  N. Laskin,et al.  Fractional quantum mechanics , 2008, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[32]  Weizhu Bao,et al.  An Explicit Unconditionally Stable Numerical Method for Solving Damped Nonlinear Schrödinger Equations with a Focusing Nonlinearity , 2003, SIAM Journal on Numerical Analysis.

[33]  Cem Çelik,et al.  Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative , 2012, J. Comput. Phys..