BRMS1 expression alters the ultrastructural, biomechanical and biochemical properties of MDA-MB-435 human breast carcinoma cells: an AFM and Raman microspectroscopy study.

Restoring BReast cancer Metastasis Suppressor 1 (BRMS1) expression suppresses metastasis in MDA-MB-435 human breast carcinoma cells at ectopic sites without affecting tumor formation at orthotopic site in the body. BRMS1 expression induces many phenotypic alterations in 435 cells such as cell adhesion, cytoskeleton rearrangement, and the down regulation of epidermal growth factor receptor (EGFR) expression. In order to better understand the role of cellular biomechanics in breast cancer metastasis, the qualitative and quantitative detection of cellular biomechanics and biochemical composition is urgently needed. In the present work, using atomic force microscopy (AFM) and fluorescent microscopy we revealed that BRMS1 expression in 435 cells induced reorganization of F-actin and caused alteration in cytoarchitectures (cell topography and ultrastructure). Results from AFM observed increase in biomechanical properties which include cell adhesion, cellular spring constant, and Young's modulus in 435/BRMS1 cells. Raman microspectroscopy showed weaker vibrational spectroscopic bands in 435/BRMS1 cells, implying decrease in concentration of cellular biochemical components in these cells. This was despite the similar spectral patterns observed between 435 and 435/BRMS1 cells. This work demonstrated the feasibility of applying AFM and Raman techniques for in situ measurements of the cellular biomechanics and biochemical components of breast carcinoma cells. It provides vital clues in understanding of the role of cellular biomechanics in cancer metastasis, and further the development of new techniques for early diagnosis of breast cancer.

[1]  B. Logan,et al.  Contributions of Bacterial Surface Polymers, Electrostatics, and Cell Elasticity to the Shape of AFM Force Curves , 2002 .

[2]  Dieter Naumann,et al.  Infrared and NIR Raman spectroscopy in medical microbiology , 1998, Photonics West - Biomedical Optics.

[3]  Christopher J. Frank,et al.  Raman spectroscopy of normal and diseased human breast tissues. , 1995, Analytical chemistry.

[4]  D. Yamazaki,et al.  Regulation of cancer cell motility through actin reorganization , 2005, Cancer science.

[5]  D. Welch,et al.  Breast cancer metastasis suppressor 1: Update , 2004, Clinical & Experimental Metastasis.

[6]  D. Welch,et al.  Genetic Basis of Human Breast Cancer Metastasis , 2001, Journal of Mammary Gland Biology and Neoplasia.

[7]  K. Bhadriraju,et al.  Extracellular matrix- and cytoskeleton-dependent changes in cell shape and stiffness. , 2002, Experimental cell research.

[8]  D. W. Ball,et al.  The Theory of Raman Spectroscopy , 2019, Modern Raman Spectroscopy.

[9]  Daniel A Fletcher,et al.  Force microscopy of nonadherent cells: a comparison of leukemia cell deformability. , 2006, Biophysical journal.

[10]  H. Abramczyk,et al.  The hallmarks of breast cancer by Raman spectroscopy , 2009 .

[11]  D. Theodorescu,et al.  Metastasis Suppressor Proteins: Discovery, Molecular Mechanisms, and Clinical Application , 2006, Clinical Cancer Research.

[12]  C. Kendall,et al.  Vibrational spectroscopy: a clinical tool for cancer diagnostics. , 2009, The Analyst.

[13]  D. Jablons,et al.  Hallmarks of Metastasis , 2009 .

[14]  Paul R. Carey Raman spectroscopy for the analysis of biomolecules , 1983 .

[15]  Subra Suresh,et al.  Biomechanics and biophysics of cancer cells. , 2007, Acta biomaterialia.

[16]  James P Freyer,et al.  Raman spectroscopy detects biochemical changes due to proliferation in mammalian cell cultures. , 2005, Biophysical journal.

[17]  Kedar S Vaidya,et al.  Breast Cancer Metastasis Suppressor-1 Differentially Modulates Growth Factor Signaling* , 2008, Journal of Biological Chemistry.

[18]  E. E. L O G A N,et al.  Probing Bacterial Electrosteric Interactions Using Atomic Force Microscopy , 2022 .

[19]  I. Macdonald,et al.  Effect of anti-fibrinolytic therapy on experimental melanoma metastasis , 2008, Clinical & Experimental Metastasis.

[20]  L L Hench,et al.  In situ monitoring of cell death using Raman microspectroscopy. , 2004, Biopolymers.

[21]  H. Butt,et al.  Force measurements with the atomic force microscope: Technique, interpretation and applications , 2005 .

[22]  Bernhard Lendl,et al.  Raman spectroscopy in chemical bioanalysis. , 2004, Current opinion in chemical biology.

[23]  M. Olivé,et al.  Long-term human breast carcinoma cell lines of metastatic origin: Preliminary characterization , 1978, In Vitro.

[24]  A. Talari,et al.  Raman Spectroscopy of Biological Tissues , 2007 .

[25]  Z. Stachura,et al.  Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy , 1999, European Biophysics Journal.

[26]  M. Radmacher,et al.  Bacterial turgor pressure can be measured by atomic force microscopy. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[27]  D. Welch,et al.  Functional evidence for a novel human breast carcinoma metastasis suppressor, BRMS1, encoded at chromosome 11q13. , 2000, Cancer research.

[28]  G. Casey,et al.  Breast Cancer Metastasis Suppressor 1 Inhibits Gene Expression by Targeting Nuclear Factor-κB Activity , 2005 .

[29]  S. Andreadis,et al.  PKC-delta binds to E-cadherin and mediates EGF-induced cell scattering. , 2009, Experimental cell research.

[30]  C. Lim,et al.  AFM indentation study of breast cancer cells. , 2008, Biochemical and biophysical research communications.

[31]  A. Mantovani,et al.  Cancer: Inflaming metastasis , 2008, Nature.

[32]  Joseph Irudayaraj,et al.  Characterization of human breast epithelial cells by confocal Raman microspectroscopy. , 2006, Cancer detection and prevention.

[33]  D. Welch,et al.  Metastasis suppressor pathways--an evolving paradigm. , 2003, Cancer letters.

[34]  Subra Suresh,et al.  Nanomedicine: elastic clues in cancer detection. , 2007, Nature nanotechnology.

[35]  B. Weimer,et al.  Microarray analysis reveals potential mechanisms of BRMS1-mediated metastasis suppression , 2007, Clinical & Experimental Metastasis.

[36]  P. Hildebrandt Biochemical Applications of Raman Spectroscopy , 1999 .

[37]  Lei Wu,et al.  The anti-cancer drug lenalidomide inhibits angiogenesis and metastasis via multiple inhibitory effects on endothelial cell function in normoxic and hypoxic conditions. , 2009, Microvascular research.

[38]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[39]  G. Casey,et al.  Breast cancer metastasis suppressor 1 (BRMS1) inhibits osteopontin transcription by abrogating NF-κB activation , 2007, Molecular Cancer.

[40]  James K Gimzewski,et al.  AFM-based analysis of human metastatic cancer cells , 2008, Nanotechnology.

[41]  Axel Niendorf,et al.  Passive and active single-cell biomechanics: a new perspective in cancer diagnosis , 2009 .

[42]  W F Heinz,et al.  Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope. , 1999, Trends in biotechnology.

[43]  P. Steeg Metastasis suppressors alter the signal transduction of cancer cells , 2003, Nature Reviews Cancer.

[44]  J. Rao,et al.  Nanomechanical analysis of cells from cancer patients. , 2007, Nature nanotechnology.

[45]  R. Samant Breast Cancer Metastasis-Suppressor 1 , 2008, Definitions.

[46]  Chang Lu,et al.  Microfluidic electroporative flow cytometry for studying single-cell biomechanics. , 2008, Analytical chemistry.

[47]  Daniel A Fletcher,et al.  Chemotherapy exposure increases leukemia cell stiffness. , 2007, Blood.

[48]  Ioan Notingher,et al.  Raman Spectroscopy Cell-based Biosensors , 2007, Sensors (Basel, Switzerland).

[49]  D. Welch,et al.  Breast cancer metastatic potential correlates with a breakdown in homospecific and heterospecific gap junctional intercellular communication. , 2001, Cancer research.

[50]  W. Di,et al.  Suppression of human ovarian carcinoma metastasis by the metastasis‐suppressor gene, BRMS1 , 2005, International Journal of Gynecologic Cancer.

[51]  Cheng-Huang Lin,et al.  Resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy of the selected rotamers of m-methoxyaniline and o-methoxyaniline , 2007 .

[52]  Ganesh D. Sockalingum,et al.  Micro-Raman spectroscopy of mixed cancer cell populations , 2005 .

[53]  Dongquan Chen,et al.  Breast cancer metastasis suppressor 1 coordinately regulates metastasis‐associated microRNA expression , 2009, International journal of cancer.

[54]  Jian Ling,et al.  Direct Raman imaging techniques for study of the subcellular distribution of a drug. , 2002, Applied optics.

[55]  H. Byrne,et al.  Vibrational spectroscopy for cervical cancer pathology, from biochemical analysis to diagnostic tool. , 2007, Experimental and molecular pathology.

[56]  H. Fabian,et al.  New developments in Raman spectroscopy of biological systems , 1993 .

[57]  G. Casey,et al.  Breast cancer metastasis suppressor 1 inhibits gene expression by targeting nuclear factor-kappaB activity. , 2005, Cancer research.

[58]  Kedar S Vaidya,et al.  Metastasis suppressors genes in cancer. , 2008, The international journal of biochemistry & cell biology.

[59]  J. Winefordner,et al.  Raman spectroscopy in bioanalysis. , 2000, Talanta.

[60]  Joseph C. Shope,et al.  Metastasis suppression by breast cancer metastasis suppressor 1 involves reduction of phosphoinositide signaling in MDA-MB-435 breast carcinoma cells. , 2005, Cancer research.

[61]  C. Krishna,et al.  Discrimination of normal, benign, and malignant breast tissues by Raman spectroscopy. , 2006, Biopolymers.

[62]  N. Christensen,et al.  Analysis of mechanisms underlying BRMS1 suppression of metastasis , 2004, Clinical & Experimental Metastasis.

[63]  Wen-ting Cheng,et al.  FT-IR and Raman vibrational microspectroscopies used for spectral biodiagnosis of human tissues , 2007 .