Emulating \emph{ab initio} computations of infinite nucleonic matter

We construct efficient emulators for the ab initio computation of the infinite nuclear matter equation of state. These emulators are based on the subspace-projected coupled-cluster method for which we here develop a new algorithm called small-batch voting to eliminate spurious states that might appear when emulating quantum many-body methods based on a non-Hermitian Hamiltonian. The efficiency and accuracy of these emulators facilitate a rigorous statistical analysis within which we explore nuclear matter predictions for > 10 6 different parametrizations of a chiral interaction model with explicit ∆-isobars at next-to-next-to leading order. Constrained by nucleon-nucleon scattering phase shifts and bound-state observables of light nuclei up to 4 He, we use history matching to identify non-implausible domains for the low-energy coupling constants of the chiral interaction. Within these domains we perform a Bayesian analysis using sampling/importance resampling with different likelihood calibrations and study correlations between interaction parameters, calibration observables in light nuclei, and nuclear matter saturation properties.

[1]  Paul Stevenson,et al.  What is ab initio in nuclear theory? , 2022, Frontiers in Physics.

[2]  G. Hagen,et al.  Emergence of nuclear saturation within $\Delta$--full chiral effective field theory , 2022, 2212.13203.

[3]  Weiguang Jiang,et al.  Bayesian probability updates using sampling/importance resampling: Applications in nuclear theory , 2022, Frontiers in Physics.

[4]  M. S. Smith,et al.  Horizons: nuclear astrophysics in the 2020s and beyond , 2022, Journal of Physics G: Nuclear and Particle Physics.

[5]  J. Melendez,et al.  Model reduction methods for nuclear emulators , 2022, Journal of Physics G: Nuclear and Particle Physics.

[6]  C. Forssén,et al.  Bayesian predictions for A=6 nuclei using eigenvector continuation emulators , 2022, Physical Review C.

[7]  I. Vernon,et al.  Ab initio predictions link the neutron skin of 208Pb to nuclear forces , 2021, Nature Physics.

[8]  Dean Lee,et al.  Self-learning Emulators and Eigenvector Continuation , 2021, Physical Review Research.

[9]  M. Coughlin,et al.  Constraining neutron-star matter with microscopic and macroscopic collisions , 2021, Nature.

[10]  J. Melendez,et al.  Rigorous constraints on three-nucleon forces in chiral effective field theory from fast and accurate calculations of few-body observables , 2021, Physical Review C.

[11]  A. Schwenk,et al.  New equations of state constrained by nuclear physics, observations, and QCD calculations of high-density nuclear matter , 2021, Physical Review C.

[12]  C. Drischler,et al.  Chiral Effective Field Theory and the High-Density Nuclear Equation of State , 2021, 2101.01709.

[13]  Avik Sarkar,et al.  Convergence of Eigenvector Continuation , 2020, Physical review letters.

[14]  F. Kondev,et al.  The AME 2020 atomic mass evaluation (II). Tables, graphs and references , 2021, Chinese Physics C.

[15]  R. Furnstahl,et al.  Efficient emulators for scattering using eigenvector continuation , 2020, 2007.03635.

[16]  C. Forss'en,et al.  Accurate bulk properties of nuclei from A=2 to ∞ from potentials with Δ isobars , 2020, 2006.16774.

[17]  J. Lattimer,et al.  Equation of State Constraints from Nuclear Physics, Neutron Star Masses, and Future Moment of Inertia Measurements , 2020, The Astrophysical Journal.

[18]  J. Melendez,et al.  Quantifying uncertainties and correlations in the nuclear-matter equation of state , 2020, 2004.07805.

[19]  J. Melendez,et al.  How Well Do We Know the Neutron-Matter Equation of State at the Densities Inside Neutron Stars? A Bayesian Approach with Correlated Uncertainties. , 2020, Physical review letters.

[20]  T. Duguet,et al.  Novel chiral Hamiltonian and observables in light and medium-mass nuclei , 2019, Physical Review C.

[21]  M. Leonhardt,et al.  Symmetric Nuclear Matter from the Strong Interaction. , 2019, Physical review letters.

[22]  G. Hagen,et al.  Global Sensitivity Analysis of Bulk Properties of an Atomic Nucleus. , 2019, Physical review letters.

[23]  Dean Lee,et al.  Eigenvector continuation as an efficient and accurate emulator for uncertainty quantification , 2019, 1909.08446.

[24]  M. T. Pratola,et al.  Quantifying correlated truncation errors in effective field theory , 2019, Physical Review C.

[25]  S. Gandolfi,et al.  Quantum Monte Carlo Methods in Nuclear Physics: Recent Advances , 2019, Annual Review of Nuclear and Particle Science.

[26]  A. Steiner,et al.  Constraining nuclear matter parameters with GW170817 , 2018, Physical Review D.

[27]  A. Schwenk,et al.  Chiral Interactions up to Next-to-Next-to-Next-to-Leading Order and Nuclear Saturation. , 2017, Physical review letters.

[28]  A. Polls,et al.  Microscopic predictions of the nuclear matter liquid-gas phase transition , 2018, Physical Review C.

[29]  M. Viviani,et al.  Correlations imposed by the unitary limit between few-nucleon systems, nuclear matter, and neutron stars. , 2018, Physical review letters.

[30]  I. Bombaci,et al.  Equation of state of dense nuclear matter and neutron star structure from nuclear chiral interactions , 2018, 1805.11846.

[31]  Ilse C. F. Ipsen,et al.  Eigenvector Continuation with Subspace Learning. , 2017, Physical review letters.

[32]  R. Roth,et al.  Structure of the Lightest Tin Isotopes. , 2017, Physical review letters.

[33]  T. Morris,et al.  Δ isobars and nuclear saturation , 2017, 1707.09028.

[34]  A. Schwenk,et al.  Saturation with chiral interactions and consequences for finite nuclei , 2017, 1704.02915.

[35]  A. Ohnishi,et al.  Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy , 2016, 1611.07133.

[36]  M. Hoferichter,et al.  Reconciling threshold and subthreshold expansions for pion–nucleon scattering , 2016, 1610.08978.

[37]  Junli Liu,et al.  Bayesian uncertainty analysis for complex systems biology models: emulation, global parameter searches and evaluation of gene functions , 2016, BMC Systems Biology.

[38]  M. Viviani,et al.  Local chiral potentials with Δ -intermediate states and the structure of light nuclei , 2016 .

[39]  A. Afanasjev,et al.  Covariant energy density functionals: Nuclear matter constraints and global ground state properties , 2016, 1604.07296.

[40]  W. Nazarewicz,et al.  Nuclear charge and neutron radii and nuclear matter: Trend analysis in Skyrme density-functional-theory approach , 2016, 1601.06324.

[41]  S. Gandolfi,et al.  Quantum Monte Carlo calculations of neutron matter with chiral three-body forces , 2015, 1507.05561.

[42]  W. Nazarewicz,et al.  Neutron and weak-charge distributions of the 48Ca nucleus , 2015, Nature Physics.

[43]  J. Menendez,et al.  Nuclear forces and their impact on neutron-rich nuclei and neutron-rich matter , 2015, 1508.06893.

[44]  R. Furnstahl,et al.  Quantifying truncation errors in effective field theory , 2015, 1506.01343.

[45]  W. Nazarewicz,et al.  Accurate nuclear radii and binding energies from a chiral interaction , 2015, 1502.04682.

[46]  R. Schiavilla,et al.  Minimally nonlocal nucleon-nucleon potentials with chiral two-pion exchange including Δ resonances , 2014, 1412.6446.

[47]  E. Epelbaum,et al.  Precision Nucleon-Nucleon Potential at Fifth Order in the Chiral Expansion. , 2014, Physical review letters.

[48]  Michael Goldstein,et al.  Galaxy Formation: Bayesian History Matching for the Observable Universe , 2014, 1405.4976.

[49]  M. Hjorth-Jensen,et al.  Coupled-cluster computations of atomic nuclei , 2013, Reports on progress in physics. Physical Society.

[50]  C. Horowitz,et al.  Coupled-cluster calculations of nucleonic matter , 2013, 1311.2925.

[51]  P. Piecuch,et al.  Extension of coupled-cluster theory with a noniterative treatment of connected triply excited clusters to three-body Hamiltonians , 2013, 1309.1123.

[52]  W. Nazarewicz,et al.  Information content of the weak-charge form factor , 2013, 1308.1659.

[53]  A. Polls,et al.  Symmetric nuclear matter with chiral three-nucleon forces in the self-consistent Green's functions approach , 2013, 1307.1889.

[54]  M. Hjorth-Jensen,et al.  Coupled-cluster studies of infinite nuclear matter , 2013, 1306.5681.

[55]  Stefan M. Wild,et al.  Optimized chiral nucleon-nucleon interaction at next-to-next-to-leading order. , 2013, Physical review letters.

[56]  W. Nazarewicz,et al.  Energy density functional for nuclei and neutron stars , 2012, 1211.6292.

[57]  I. Angeli,et al.  Table of experimental nuclear ground state charge radii: An update , 2013 .

[58]  M. Baldo,et al.  Comparative study of neutron and nuclear matter with simplified Argonne nucleon-nucleon potentials , 2012, 1207.6314.

[59]  F. Camera,et al.  Constraints on the symmetry energy and neutron skins from experiments and theory , 2012, 1204.0466.

[60]  I. Vidaña,et al.  Constraining the nuclear equation of state at subsaturation densities. , 2012, Physical review letters.

[61]  J. Lattimer,et al.  CONSTRAINING THE SYMMETRY PARAMETERS OF THE NUCLEAR INTERACTION , 2012, 1203.4286.

[62]  J. S. Martins,et al.  Skyrme interaction and nuclear matter constraints , 2012, 1202.3902.

[63]  Nicolas Produit,et al.  Measurement of the neutron radius of 208Pb through parity violation in electron scattering. , 2012, Physical review letters.

[64]  V. Somà,et al.  Self-consistent Green's functions calculation of the nucleon mean-free path , 2011, Physical review letters.

[65]  Neil D. Lawrence,et al.  Kernels for Vector-Valued Functions: a Review , 2011, Found. Trends Mach. Learn..

[66]  D. R. Entem,et al.  Chiral effective field theory and nuclear forces , 2011, 1105.2919.

[67]  M. Centelles,et al.  Neutron skin of (208)Pb, nuclear symmetry energy, and the parity radius experiment. , 2011, Physical review letters.

[68]  K. Hebeler,et al.  Improved nuclear matter calculations from chiral low-momentum interactions , 2010, 1012.3381.

[69]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[70]  G. Hagen,et al.  Ab initio coupled-cluster approach to nuclear structure with modern nucleon-nucleon interactions , 2010, 1005.2627.

[71]  J. Piekarewicz,et al.  Relativistic models of the neutron-star matter equation of state , 2010, 1003.1298.

[72]  Ian Vernon,et al.  Galaxy formation : a Bayesian uncertainty analysis. , 2010 .

[73]  G. Hagen,et al.  Ab initio computation of neutron-rich oxygen isotopes , 2009, 0907.4167.

[74]  S. Gandolfi,et al.  Quantum Monte Carlo calculation of the equation of state of neutron matter , 2009, 0903.2610.

[75]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[76]  Isaiah Shavitt,et al.  Many – Body Methods in Chemistry and Physics: Preface , 2009 .

[77]  R. Bartlett,et al.  Coupled-cluster theory in quantum chemistry , 2007 .

[78]  J. Lattimer,et al.  Neutron star observations: Prognosis for equation of state constraints , 2006, astro-ph/0612440.

[79]  G. Colò,et al.  Deducing the nuclear-matter incompressibility coefficient from data on isoscalar compression modes , 2006 .

[80]  M. Hjorth-Jensen,et al.  Coupled-cluster approach to nuclear physics , 2003, nucl-th/0308088.

[81]  Los Alamos National Laboratory,et al.  Quantum Monte Carlo calculations of neutron matter , 2003, nucl-th/0302041.

[82]  Paul-Henri Heenen,et al.  Self-consistent mean-field models for nuclear structure , 2003 .

[83]  J. Piekarewicz Correlating the giant-monopole resonance to the nuclear-matter incompressibility , 2002, nucl-th/0205007.

[84]  R. Furnstahl Neutron radii in mean field models , 2001, nucl-th/0112085.

[85]  B. A. Brown,et al.  Neutron radii in nuclei and the neutron equation of state. , 2000, Physical review letters.

[86]  A. Lejeune,et al.  Nuclear matter EOS with a three-body force , 2000, nucl-th/0102038.

[87]  J. Lattimer,et al.  Nuclear matter and its role in supernovae, neutron stars and compact object binary mergers , 2000, astro-ph/0002203.

[88]  Heisenberg,et al.  Microscopic calculation of the inclusive electron scattering structure function in 16O , 1999, Physical review letters.

[89]  H. Heiselberg,et al.  PHASES OF DENSE MATTER IN NEUTRON STARS , 1999, astro-ph/9910200.

[90]  D. Youngblood,et al.  Incompressibility of Nuclear Matter from the Giant Monopole Resonance , 1999 .

[91]  H. Toki,et al.  Relativistic equation of state of nuclear matter for supernova explosion , 1998 .

[92]  M. Baldo,et al.  BETHE-BRUECKNER-GOLDSTONE EXPANSION IN NUCLEAR MATTER , 1998 .

[93]  R. Bishop,et al.  An Efficient Implementation of High-Order Coupled-Cluster Techniques Applied to Quantum Magnets , 1996, cond-mat/9611012.

[94]  Ray,et al.  Two-nucleon potential from chiral Lagrangians. , 1995, Physical review. C, Nuclear physics.

[95]  F. Pukelsheim The Three Sigma Rule , 1994 .

[96]  Ray,et al.  Nucleon-nucleon potential from an effective chiral Lagrangian. , 1994, Physical review letters.

[97]  van Kolck U Few-nucleon forces from chiral Lagrangians. , 1994, Physical review. C, Nuclear physics.

[98]  Youngblood,et al.  Nuclear matter compressibility from isoscalar giant monopole resonance. , 1993, Physical review. C, Nuclear physics.

[99]  Alan E. Gelfand,et al.  Bayesian statistics without tears: A sampling-resampling perspective , 1992 .

[100]  R. Bishop,et al.  An overview of coupled cluster theory and its applications in physics , 1991 .

[101]  Bishop,et al.  Extended coupled-cluster method. I. Generalized coherent bosonization as a mapping of quantum theory into classical Hamiltonian mechanics. , 1987, Physical review. A, General physics.

[102]  J. G. Zabolitzky,et al.  Many-fermion theory in expS- (or coupled cluster) form , 1978 .

[103]  J. Cizek On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .

[104]  F. Coester,et al.  Short-range correlations in nuclear wave functions , 1960 .

[105]  F. Coester,et al.  Bound states of a many-particle system , 1958 .

[106]  K. Brueckner,et al.  Many-Body Problem for Strongly Interacting Particles. II. Linked Cluster Expansion , 1955 .