Using the NASA EOS A-Train to Probe the Performance of the NOAA PATMOS-x Cloud Fraction CDR

An important component of the AVHRR PATMOS-x climate date record (CDR)—or any satellite cloud climatology—is the performance of its cloud detection scheme and the subsequent quality of its cloud fraction CDR. PATMOS-x employs the NOAA Enterprise Cloud Mask for this, which is based on a naive Bayesian approach. The goal of this paper is to generate analysis of the PATMOS-x cloud fraction CDR to facilitate its use in climate studies. Performance of PATMOS-x cloud detection is compared to that of the well-established MYD35 and CALIPSO products from the EOS A-Train. Results show the AVHRR PATMOS-x CDR compares well against CALIPSO with most regions showing proportional correct values of 0.90 without any spatial filtering and 0.95 when a spatial filter is applied. Values are similar for the NASA MODIS MYD35 mask. A direct comparison of PATMOS-x and MYD35 from 2003 to 2014 also shows agreement over most regions in terms of mean cloud amount, inter-annual variability, and linear trends. Regional and seasonal differences are discussed. The analysis demonstrates that PATMOS-x cloud amount uncertainty could effectively screen regions where PATMOS-x differs from MYD35.

[1]  Karl-Göran Karlsson,et al.  CLARA-A1: a cloud, albedo, and radiation dataset from 28 yr of global AVHRR data , 2013 .

[2]  David M. Winker,et al.  Adaptive algorithms for the fully-automated retrieval of cloud and aerosol extinction profiles from CALIPSO lidar data , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[3]  Andrew K. Heidinger,et al.  A global survey of the effect of cloud contamination on the aerosol optical thickness and its long‐term trend derived from operational AVHRR satellite observations , 2013 .

[4]  Zhengqiang Li,et al.  Multiyear satellite and surface observations of cloud fraction over China , 2014 .

[5]  Thomas S. Pagano,et al.  Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1 , 1998, IEEE Trans. Geosci. Remote. Sens..

[6]  Larry L. Stowe,et al.  Scientific basis and initial evaluation of the CLAVR-1 global clear cloud classification algorithm f , 1999 .

[7]  Steven A. Ackerman,et al.  Satellite Regional Cloud Climatology over the Great Lakes , 2013, Remote. Sens..

[8]  Andi Walther,et al.  A Naive Bayesian Cloud-Detection Scheme Derived fromCALIPSOand Applied within PATMOS-x , 2012 .

[9]  Steven Platnick,et al.  Viewing Geometry Dependencies in MODIS Cloud Products , 2010 .

[10]  M. Michelini,et al.  Ipcc 'Summary for Policymakers' in Tar: Do its Results Give a Support Always Adequate to the Urgencies of Kyoto Global Negotiations? , 2001 .

[11]  Andrew K. Heidinger,et al.  Tropical stratospheric cloud climatology from the PATMOS‐x dataset: An assessment of convective contributions to stratospheric water , 2011 .

[12]  W. Paul Menzel,et al.  Global cloud cover trends inferred from two decades of HIRS observations , 2005, SPIE Asia-Pacific Remote Sensing.

[13]  Sunny Sun-Mack,et al.  CERES Edition-2 Cloud Property Retrievals Using TRMM VIRS and Terra and Aqua MODIS Data—Part I: Algorithms , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[14]  W. Paul Menzel,et al.  Nighttime polar cloud detection with MODIS , 2004 .

[15]  W. Menzel,et al.  Discriminating clear sky from clouds with MODIS , 1998 .

[16]  K. Moffett,et al.  Remote Sens , 2015 .

[17]  K. Karlsson,et al.  On the optimal method for evaluating cloud products from passive satellite imagery using CALIPSO-CALIOP data: example investigating the CM SAF CLARA-A1 dataset , 2013 .

[18]  Andrew K. Heidinger,et al.  PATMOS-x: Results from a Diurnally Corrected 30-yr Satellite Cloud Climatology , 2013 .

[19]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[20]  Andrew K. Heidinger,et al.  Entering the Era of +30-Year Satellite Cloud Climatologies: A North American Case Study , 2014 .

[21]  Karl-Göran Karlsson,et al.  Variability and Trends in U.S. Cloud Cover: ISCCP, PATMOS-x, and CLARA-A1 Compared to Homogeneity-Adjusted Weather Observations , 2015 .

[22]  C. Velden,et al.  New evidence for a relationship between Atlantic tropical cyclone activity and African dust outbreaks , 2006 .

[23]  Bryan A. Baum,et al.  Evaluating and Improving Cloud Parameter Retrievals , 2013 .

[24]  W. Paul Menzel,et al.  MODIS Cloud-Top Property Refinements for Collection 6 , 2012 .

[25]  Steven A. Ackerman,et al.  Cloud Detection with MODIS. Part II: Validation , 2008 .

[26]  Richard A. Frey,et al.  Cloud Detection with MODIS. Part I: Improvements in the MODIS Cloud Mask for Collection 5 , 2008 .

[27]  Andi Walther,et al.  The Pathfinder Atmospheres–Extended AVHRR Climate Dataset , 2014 .

[28]  H. Chepfer,et al.  Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel , 2013 .

[29]  Steven A. Ackerman,et al.  Errors in cloud detection over the Arctic using a satellite imager and implications for observing feedback mechanisms. , 2010 .