Construction of bootstrap confidence intervals on sensitivity indices computed by polynomial chaos expansion
暂无分享,去创建一个
Michel Salaün | Frank Petitjean | Sylvain Dubreuil | Marc Berveiller | M. Berveiller | F. Petitjean | M. Salaün | S. Dubreuil
[1] Emanuele Borgonovo,et al. Sampling strategies in density-based sensitivity analysis , 2012, Environ. Model. Softw..
[2] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[3] C. Mallows. Some Comments on Cp , 2000, Technometrics.
[4] B. Sudret,et al. An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis , 2010 .
[5] B. Efron,et al. Bootstrap confidence intervals , 1996 .
[6] de Maurice Lemaire. Fiabilité des structures , 2006 .
[7] Jon C. Helton,et al. Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models , 2009, Reliab. Eng. Syst. Saf..
[8] Pierre-André Cornillon,et al. Régressión :: théorie et applications , 2007 .
[9] Ilya M. Sobol,et al. Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .
[10] I. Sobola,et al. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .
[11] Bruno Sudret,et al. Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..
[12] Emanuele Borgonovo,et al. Global sensitivity measures from given data , 2013, Eur. J. Oper. Res..
[13] Alexandre Janon,et al. Confidence intervals for sensitivity indices using reduced-basis metamodels , 2011, 1102.4668.
[14] Sharif Rahman,et al. Global sensitivity analysis by polynomial dimensional decomposition , 2011, Reliab. Eng. Syst. Saf..
[15] Michel Salaün,et al. A new adaptive response surface method for reliability analysis , 2013 .
[16] B. Efron. Better Bootstrap Confidence Intervals , 1987 .
[17] I. Sobol. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .
[18] Joseph A. C. Delaney. Sensitivity analysis , 2018, The African Continental Free Trade Area: Economic and Distributional Effects.
[19] Roger G. Ghanem,et al. Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure , 2005, SIAM J. Sci. Comput..
[20] Bruno Sudret,et al. Efficient computation of global sensitivity indices using sparse polynomial chaos expansions , 2010, Reliab. Eng. Syst. Saf..
[21] N. Gayton,et al. CQ2RS: a new statistical approach to the response surface method for reliability analysis , 2003 .
[22] G. Blatman,et al. Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis , 2009 .
[23] Nicolas Gayton,et al. RPCM: a strategy to perform reliability analysis using polynomial chaos and resampling , 2010 .
[24] Robert Tibshirani,et al. An Introduction to the Bootstrap , 1994 .
[25] T. Klein,et al. Asymptotic normality and efficiency of two Sobol index estimators , 2013, 1303.6451.
[26] Bruno Sudret,et al. Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..
[27] R. Tibshirani,et al. Least angle regression , 2004, math/0406456.