Study of the surface oxides and corrosion behaviour of an equiatomic CoCrFeMnNi high entropy alloy by XPS and ToF-SIMS

[1]  Xin Wang,et al.  Characterization of the passive properties of 254SMO stainless steel in simulated desulfurized flue gas condensates by electrochemical analysis, XPS and ToF-SIMS , 2020 .

[2]  P. Marcus,et al.  Thermal stability of the passive film formed on 316L stainless steel surface studied by ToF-SIMS , 2020, Corrosion Science.

[3]  I. Guillot,et al.  Combining experiments and modeling to explore the solid solution strengthening of high and medium entropy alloys , 2019, Acta Materialia.

[4]  J. Jiménez,et al.  Effect of Mn additions on the corrosion behaviour of TWIP Fe-Mn-Al-Si austenitic steel in chloride solution , 2019, Corrosion Science.

[5]  P. Marcus,et al.  Passivation-Induced Physicochemical Alterations of the Native Surface Oxide Film on 316L Austenitic Stainless Steel , 2019, Journal of The Electrochemical Society.

[6]  Pin Lu,et al.  Passivation of a corrosion resistant high entropy alloy in non-oxidizing sulfate solutions , 2019, Acta Materialia.

[7]  P. Marcus,et al.  Comparative study of the surface oxide films on lean duplex and corresponding single phase stainless steels by XPS and ToF-SIMS , 2018, Corrosion Science.

[8]  P. Pimienta,et al.  Mechanical Properties , 2018, Bainite in Steels.

[9]  Jincheng Wang,et al.  Effect of Mo Addition on Corrosion Behavior of High-Entropy Alloys CoCrFeNiMox in Aqueous Environments , 2018, Acta Metallurgica Sinica (English Letters).

[10]  P. Marcus,et al.  Progress in corrosion science at atomic and nanometric scales , 2018, Progress in Materials Science.

[11]  Dierk Raabe,et al.  Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution , 2018 .

[12]  M. Feuerbacher,et al.  A single-phase bcc high-entropy alloy in the refractory Zr-Nb-Ti-V-Hf system , 2018, Scripta Materialia.

[13]  M. Gibson,et al.  Corrosion of high entropy alloys , 2017, npj Materials Degradation.

[14]  M. P. Phaniraj,et al.  Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement , 2017 .

[15]  J. Tylczak,et al.  Corrosion Behavior of Cocrfemnni High-Entropy Alloys (HEAs) Under Aqueous Acidic Conditions , 2017 .

[16]  I. Guillot,et al.  The fcc solid solution stability in the Co-Cr-Fe-Mn-Ni multi-component system , 2017 .

[17]  P. Liaw,et al.  Corrosion-resistant high-entropy alloys: A review , 2017 .

[18]  D. Miracle,et al.  A critical review of high entropy alloys and related concepts , 2016 .

[19]  G. Eggeler,et al.  Oxidation Behavior of the CrMnFeCoNi High-Entropy Alloy , 2016, Oxidation of Metals.

[20]  Reinhard Pippan,et al.  Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation , 2015 .

[21]  P. Marcus,et al.  Effects of molybdenum on the composition and nanoscale morphology of passivated austenitic stainless steel surfaces. , 2015, Faraday discussions.

[22]  Nikita Stepanov,et al.  Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys , 2015 .

[23]  Y. Champion,et al.  Insights into the phase diagram of the CrMnFeCoNi high entropy alloy , 2015 .

[24]  Takeshi Egami,et al.  In-situ TEM observation of structural changes in nano-crystalline CoCrCuFeNi multicomponent high-entropy alloy (HEA) under fast electron irradiation by high voltage electron microscopy (HVEM) , 2015 .

[25]  C. Woodward,et al.  Accelerated exploration of multi-principal element alloys with solid solution phases , 2015, Nature Communications.

[26]  R. Ritchie,et al.  A fracture-resistant high-entropy alloy for cryogenic applications , 2014, Science.

[27]  J. Yeh,et al.  High-Entropy Alloys: A Critical Review , 2014 .

[28]  Thierry Chauveau,et al.  Microstructure of a near-equimolar refractory high-entropy alloy , 2014 .

[29]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[30]  George M. Pharr,et al.  Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys , 2014 .

[31]  Zhi Tang,et al.  Alloying and Processing Effects on the Aqueous Corrosion Behavior of High-Entropy Alloys , 2014, Entropy.

[32]  Swe-Kai Chen Electrochemical Passive Properties of AlxCoCrFeNi (x = 0, 0.25, 0.50, 1.00) High-Entropy Alloys in Sulfuric Acids , 2012 .

[33]  D. Miracle,et al.  Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys , 2011 .

[34]  H. Tsai,et al.  Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy , 2011 .

[35]  Mark C. Biesinger,et al.  X-ray photoelectron spectroscopy studies of reactions on chromium metal and chromium oxide surfaces , 2011 .

[36]  Andrea R. Gerson,et al.  Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn , 2010 .

[37]  Swe-Kai Chen,et al.  Electrochemical passive properties of AlxCoCrFeNi (x = 0, 0.25, 0.50, 1.00) alloys in sulfuric acids , 2010 .

[38]  D. Skuse Recovery , 2010, International psychiatry : bulletin of the Board of International Affairs of the Royal College of Psychiatrists.

[39]  J. Yeh,et al.  Effect of the aluminium content of AlxCrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments , 2008 .

[40]  T. Yamashita,et al.  Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials , 2008 .

[41]  R. Ebner,et al.  Influence of chromium, molybdenum and cobalt on the corrosion behaviour of high carbon steels in dependence of heat treatment , 2006 .

[42]  Y. Hsu,et al.  Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution , 2005 .

[43]  Jouko Lahtinen,et al.  Chemical state quantification of iron and chromium oxides using XPS: the effect of the background subtraction method , 2005 .

[44]  D. R. Penn,et al.  Calculations of electron inelastic mean free paths , 2005 .

[45]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[46]  E. Kemnitz,et al.  Analysis of highly resolved x‐ray photoelectron Cr 2p spectra obtained with a Cr2O3 powder sample prepared with adhesive tape , 2004 .

[47]  P. Marcus,et al.  XPS study of oxides formed on nickel‐base alloys in high‐temperature and high‐pressure water , 2002 .

[48]  P. Marcus,et al.  X‐Ray Photoelectron Spectroscopy and Scanning Tunneling Microscopy Study of Passive Films Formed on (100) Fe‐18Cr‐13Ni Single‐Crystal Surfaces , 1998 .

[49]  P. Marcus,et al.  XPS and STM Study of Passive Films Formed on Fe‐22Cr(110) Single‐Crystal Surfaces , 1996 .

[50]  J. Castle,et al.  Peak fitting of the chromium 2p XPS spectrum , 1995 .

[51]  D. R. Penn,et al.  Calculations of electorn inelastic mean free paths. II. Data for 27 elements over the 50–2000 eV range , 1991 .

[52]  C. Leygraf,et al.  Initial oxidation stages on Fe_Cr(100) and Fe_Cr(110) surfaces , 1976 .

[53]  H. Evans,et al.  Chromium-depleted zones and the oxidation process in stainless steels , 1976 .

[54]  J. W. Gadzuk,et al.  Excitation energy dependence of core-level x-ray-photoemission-spectra line shapes in metals , 1975 .

[55]  Sebastian Doniach,et al.  Many-electron singularity in X-ray photoemission and X-ray line spectra from metals , 1970 .

[56]  Yong Zhang High-Entropy Materials: A Brief Introduction , 2019 .

[57]  I. Guillot,et al.  Study of a bcc multi-principal element alloy: Tensile and simple shear properties and underlying deformation mechanisms , 2018 .

[58]  P. Marcus,et al.  Effect of high temperature oxidation process on corrosion resistance of bright annealed ferritic stainless steel , 2017 .

[59]  T. Nieh,et al.  Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system , 2014 .

[60]  Evolution of Microstructure , 2000 .

[61]  P. Marcus,et al.  XPS study of the passive films formed on nitrogen-implanted austenitic stainless steels , 1992 .

[62]  I. Barin Thermochemical data of pure substances , 1989 .

[63]  J. H. Scofield,et al.  Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV , 1976 .