Satisfying the fluctuation theorem in free-energy calculations with Hamiltonian replica exchange.

An error measure, referred to as the hysteresis error, is developed from the Crooks fluctuation theorem to evaluate the sampling quality in free-energy calculations. Theory and the numerical free energy of hydration calculations are used to show that Hamiltonian replica exchange provides a direct route for minimizing the hysteresis error. Replica exchange swap probabilities yield the rate at which the hysteresis error falls with the simulation length, and this result can be used to decrease bias and statistical errors associated with free-energy calculations based on multicanonical simulations.

[1]  Lula Rosso,et al.  Efficient and precise solvation free energies via alchemical adiabatic molecular dynamics. , 2006, The Journal of chemical physics.

[2]  Charles H. Bennett,et al.  Efficient estimation of free energy differences from Monte Carlo data , 1976 .

[3]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[4]  J. Haile,et al.  Determination of Excess Gibbs Free Energy from Computer Simulation: Multiple-Parameter Charging Approach , 1987 .

[5]  R. Zwanzig High‐Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases , 1954 .

[6]  Jed W. Pitera,et al.  A Comparison of Non-Bonded Scaling Approaches for Free Energy Calculations , 2002 .

[7]  C. Predescu,et al.  On the efficiency of exchange in parallel tempering monte carlo simulations. , 2004, The journal of physical chemistry. B.

[8]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[9]  S. Takada,et al.  On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: Application to protein structure prediction , 2002 .

[10]  A. Mark,et al.  Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations , 1994 .

[11]  R. Levy,et al.  Computer simulations with explicit solvent: recent progress in the thermodynamic decomposition of free energies and in modeling electrostatic effects. , 1998, Annual review of physical chemistry.

[12]  Michael R. Shirts,et al.  Extremely precise free energy calculations of amino acid side chain analogs: Comparison of common molecular mechanics force fields for proteins , 2003 .

[13]  R. Swendsen,et al.  Comparison of free energy methods for molecular systems. , 2006, The Journal of chemical physics.

[14]  David A. Kofke,et al.  Accuracy of free-energy perturbation calculations in molecular simulation. I. Modeling , 2001 .

[15]  Y. Sugita,et al.  Replica-exchange molecular dynamics method for protein folding , 1999 .

[16]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[17]  Tomoyasu Tanaka Methods of Statistical Physics , 2002 .

[18]  Daniel M. Zuckerman,et al.  Systematic Finite-Sampling Inaccuracy in Free Energy Differences and Other Nonlinear Quantities , 2002 .

[19]  J. Hopfield,et al.  Entropy‐enthalpy compensation: Perturbation and relaxation in thermodynamic systems , 1996 .

[20]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[21]  Charles L. Brooks,et al.  λ‐dynamics: A new approach to free energy calculations , 1996 .

[22]  J. Ilja Siepmann,et al.  Novel Configurational-Bias Monte Carlo Method for Branched Molecules. Transferable Potentials for Phase Equilibria. 2. United-Atom Description of Branched Alkanes , 1999 .

[23]  R. Wolfenden,et al.  Interaction of the peptide bond with solvent water: a vapor phase analysis. , 1978, Biochemistry.

[24]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[25]  C. Jarzynski Rare events and the convergence of exponentially averaged work values. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Michael R. Shirts,et al.  Comparison of efficiency and bias of free energies computed by exponential averaging, the Bennett acceptance ratio, and thermodynamic integration. , 2005, The Journal of chemical physics.

[27]  Justin L. MacCallum,et al.  Calculation of the water–cyclohexane transfer free energies of neutral amino acid side‐chain analogs using the OPLS all‐atom force field , 2003, J. Comput. Chem..

[28]  David L Mobley,et al.  Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent. , 2007, The journal of physical chemistry. B.

[29]  G. Crooks Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  William L. Jorgensen,et al.  Accuracy of free energies of hydration using CM1 and CM3 atomic charges , 2004, J. Comput. Chem..

[31]  J. Kirkwood Statistical Mechanics of Fluid Mixtures , 1935 .

[32]  Michael R. Shirts,et al.  Solvation free energies of amino acid side chain analogs for common molecular mechanics water models. , 2005, The Journal of chemical physics.

[33]  Abraham M Lenhoff,et al.  Solvation free energy of amino acids and side-chain analogues. , 2007, The journal of physical chemistry. B.

[34]  Wei Yang,et al.  Generalized ensembles serve to improve the convergence of free energy simulations , 2003 .

[35]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[36]  Gerard T. Barkema,et al.  Monte Carlo Methods in Statistical Physics , 1999 .

[37]  D. Chandler,et al.  Introduction To Modern Statistical Mechanics , 1987 .