Doping Induced Gap Anisotropy in Iron-Based Superconductors: a Point-Contact Andreev Reflection Study of BaFe 2 −x Ni x As 2 Single Crystals

We report a systematic investigation on c-axis point-contact Andreev reflection (PCAR) in BaFe2−xNixAs2 superconducting single crystals from underdoped to overdoped regions (0.075≤ x ≤0.15). At low temperatures, an in-gap sharp peak at low-bias voltage is observed in PCAR for overdoped samples, in contrast to the case of underdoped junctions, in which an in-gap plateau is observed. The variety of the conductance spectra with doping can be well described by using a generalized Blonder–Tinkham–Klapwijk formalism with an angle-dependent gap. This gap shows a clear crossover from a nodeless in the underdoped side to a nodal feature in the overdoped region. This result provides evidence of the doping-induced evolution of the superconducting order parameter when the inter-pocket and intra-pocket scattering are tuned through doping, as expected in the s± scenario.

[1]  T. Qian,et al.  Possible nodal superconducting gap emerging at the Lifshitz transition in heavily hole-doped Ba0.1K0.9Fe2As2 , 2013, 1308.3888.

[2]  L. Taillefer,et al.  Sudden reversal in the pressure dependence of Tc in the iron-based superconductor KFe2As2 , 2013, Nature Physics.

[3]  Huiqian Luo,et al.  Specific heat of optimally doped Ba(Fe 1 − x TM x ) 2 As 2 ( TM = Co and Ni) single crystals at low temperatures: A multiband fitting , 2012 .

[4]  K. Tanigaki,et al.  Evidence for line nodes in the energy gap of the overdoped Ba(Fe1−xCox)2As2from low-temperature specific heat measurements , 2011, 1103.1300.

[5]  Yan Huang,et al.  Evidence of multiple nodeless energy gaps in superconducting Ba0.6K0.4Fe2As2 single crystals from scanning tunneling spectroscopy , 2011 .

[6]  E. Bauer,et al.  Effect of annealing on the specific heat of Ba(Fe1-xCox)2As2 , 2010, 1009.1091.

[7]  I. Vekhter,et al.  Nodes versus minima in the energy gap of iron pnictide superconductors from field-induced anisotropy. , 2010, Physical review letters.

[8]  V. A. Stepanov,et al.  Multigap superconductivity and strong electron-boson coupling in Fe-based superconductors: a point-contact Andreev-reflection study of Ba(Fe(1-x)Co(x))2As2 single crystals. , 2010, Physical review letters.

[9]  T. Devereaux,et al.  Pinpointing gap minima inBa(Fe0.94Co0.06)2As2via band-structure calculations and electronic Raman scattering , 2010, 1008.0032.

[10]  A. Chubukov,et al.  Angle-resolved specific heat in iron-based superconductors: The case for a nodeless extended s-wave gap , 2010, 1006.3091.

[11]  K. Hashimoto,et al.  Line nodes in the energy gap of superconducting BaFe2(As1-xPx)2 single crystals as seen via penetration depth and thermal conductivity , 2010 .

[12]  L. Taillefer,et al.  Nodes in the gap structure of the iron arsenide superconductor Ba ( Fe 1 − x Co x ) 2 As 2 from c -axis heat transport measurements , 2010, 1004.3804.

[13]  R. Greene,et al.  Evidence of a universal and isotropic 2 Δ / k B T C ratio in 122-type iron pnictide superconductors over a wide doping range , 2010, 1004.1445.

[14]  Ching Hua Lee,et al.  Evidence for superconducting gap nodes in the zone-centered hole bands of KFe2As2 from magnetic penetration-depth measurements , 2010, 1003.6022.

[15]  H.-P. Cheng,et al.  Spin fluctuations and superconductivity in a 3D tight-binding model for BaFe2As2 , 2010, 1003.0133.

[16]  R. Prozorov,et al.  Evidence from anisotropic penetration depth for a three-dimensional nodal superconducting gap in single-crystalline Ba ( Fe 1 − x Ni x ) 2 As 2 , 2010 .

[17]  R. Gonnelli,et al.  Probing multiband superconductivity by point-contact spectroscopy , 2009, 0912.4858.

[18]  S. Y. Li,et al.  Quantum criticality and nodal superconductivity in the FeAs-based superconductor KFe2As2. , 2009, Physical review letters.

[19]  L. Taillefer,et al.  Doping dependence of heat transport in the iron-arsenide superconductor Ba(Fe(1-x)Co(x))2As2: from isotropic to a strongly k-dependent gap structure. , 2009, Physical review letters.

[20]  J. Linder,et al.  Quantum transport in ballistic s(+/-)-wave superconductors with interband coupling : Conductance spectra, crossed Andreev reflection, and Josephson current , 2009 .

[21]  M. Huber,et al.  Evidence for a nodal energy gap in the iron-pnictide superconductor LaFePO from penetration depth measurements by scanning SQUID susceptometry. , 2009, Physical review letters.

[22]  R. Prozorov,et al.  Intrinsic pinning on structural domains in underdoped single crystals of Ba(Fe[subscript 1−x]Co[subscript x])[subscript 2]As[subscript 2] , 2009, 0909.0923.

[23]  Y. Wan,et al.  Model for determining the pairing symmetry and relative sign of the energy gap of iron-arsenide superconductors using tunneling spectroscopy. , 2009, Physical review letters.

[24]  R. Arita,et al.  Pnictogen height as a possible switch between high- T c nodeless and low- T c nodal pairings in the iron-based superconductors , 2009, 0904.2612.

[25]  S. Graser,et al.  Origin of gap anisotropy in spin fluctuation models of the iron pnictides , 2009, 0903.5216.

[26]  R. Arita,et al.  Erratum: Unconventional pairing originating from the disconnected fermi surfaces of superconducting LaFeAsO1-xFx (Physical Review Letters (2008) 101 (087004)) , 2009 .

[27]  P. Sacramento,et al.  Quantum waveguide theory of Andreev spectroscopy in multiband superconductors: The case of iron pnictides , 2009, 0901.0398.

[28]  I. Mazin,et al.  Andreev spectra and subgap bound states in multiband superconductors. , 2008, Physical review letters.

[29]  Thomas Wolf,et al.  Large anisotropic uniaxial pressure dependencies of Tc in single crystalline Ba(Fe0.92Co0.08)2As2. , 2008, Physical review letters.

[30]  J. Chu,et al.  Evidence for a nodal-line superconducting state in LaFePO. , 2008, Physical review letters.

[31]  Y. Liu,et al.  Observation of the Josephson effect in Pb/Ba1-xKxFe2As2 single crystal junctions. , 2008, Physical review letters.

[32]  A. Vishwanath,et al.  Andreev bound States as a phase-sensitive probe of the pairing symmetry of the iron pnictide superconductors. , 2008, Physical review letters.

[33]  Dung-Hai Lee,et al.  Functional renormalization-group study of the pairing symmetry and pairing mechanism of the FeAs-based high-temperature superconductor. , 2008, Physical review letters.

[34]  Dung-Hai Lee,et al.  Nodal Spin Density Wave and band topology of the FeAs based materials , 2008, 0805.3535.

[35]  Huiqian Luo,et al.  Evidence for two energy gaps in superconducting Ba0.6K0.4Fe2As2 single crystals and the breakdown of the Uemura plot. , 2008, Physical review letters.

[36]  M. Johannes,et al.  Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1-xFx. , 2008, Physical review letters.

[37]  X. Dai,et al.  Observation of Fermi-surface–dependent nodeless superconducting gaps in Ba0.6K0.4Fe2As2 , 2008, 0807.0419.

[38]  R. Arita,et al.  Unconventional pairing originating from the disconnected Fermi surfaces of superconducting LaFeAsO1-xFx. , 2008, Physical review letters.

[39]  G. Deutscher Andreev–Saint-James reflections: A probe of cuprate superconductors , 2004, cond-mat/0409225.

[40]  Tanaka,et al.  Theory for tunneling spectroscopy of anisotropic superconductors. , 1996, Physical review. B, Condensed matter.

[41]  Tanaka,et al.  Theory of Tunneling Spectroscopy of d-Wave Superconductors. , 1995, Physical review letters.

[42]  T. M. Klapwijk,et al.  Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion , 1982 .

[43]  Venkatesh Narayanamurti,et al.  Direct measurement of quasiparticle-lifetime broadening in a strong-coupled superconductor , 1978 .