Metal-Insulator-Metal Single Electron Transistors with Tunnel Barriers Prepared by Atomic Layer Deposition

Single electron transistors are nanoscale electron devices that require thin, high-quality tunnel barriers to operate and have potential applications in sensing, metrology and beyond-CMOS computing schemes. Given that atomic layer deposition is used to form CMOS gate stacks with low trap densities and excellent thickness control, it is well-suited as a technique to form a variety of tunnel barriers. This work is a review of our recent research on atomic layer deposition and post-fabrication treatments to fabricate metallic single electron transistors with a variety of metals and dielectrics.

[1]  M. Vinet,et al.  Background charges and quantum effects in quantum dots transport spectroscopy , 2008, 0810.0672.

[2]  Konstantin K. Likharev,et al.  Single-electron devices and their applications , 1999, Proc. IEEE.

[3]  Effect of annealing on the conductivity of electroless deposited Ni nanowires and films , 2006, IEEE Transactions on Nanotechnology.

[4]  Michael S. McConnell,et al.  Experimental demonstration of single electron transistors featuring SiO2 plasma-enhanced atomic layer deposition in Ni-SiO2-Ni tunnel junctions , 2016 .

[5]  L. Schneider Fabrication of Single Electron Transistors using Atomic Layer Deposition , 2014 .

[6]  Sandeep Kumar,et al.  Appl. Sci , 2013 .

[7]  Yidong Xia,et al.  A TiAl2O5 nanocrystal charge trap memory device , 2010 .

[8]  S. Machlup,et al.  Noise in Semiconductors: Spectrum of a Two‐Parameter Random Signal , 1954 .

[9]  Titanium single-electron transistor fabricated by electron-beam lithography , 2001, cond-mat/0107199.

[10]  Single-electron transistors featuring silicon nitride tunnel barriers prepared by atomic layer deposition , 2016, 2016 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS).

[11]  Samuel A. Safran,et al.  Capillary instabilities in thin films. II. Kinetics , 1986 .

[12]  Dolan,et al.  Observation of single-electron charging effects in small tunnel junctions. , 1987, Physical review letters.

[13]  J. Niemeyer,et al.  Characterization of all-chromium tunnel junctions and single-electron tunneling devices fabricated by direct-writing multilayer technique , 1999 .

[14]  M. Wu,et al.  Reduction kinetics of Goro nickel oxide using hydrogen , 2005 .

[15]  Carl V. Thompson,et al.  Capillary instabilities in thin films , 1990 .

[16]  Yasunobu Nakamura,et al.  Room-temperature Al single-electron transistor made by electron-beam lithography , 2000 .

[17]  U. Bergmann,et al.  In situ X-ray probing reveals fingerprints of surface platinum oxide. , 2011, Physical Chemistry, Chemical Physics - PCCP.

[18]  Ali Foroughi Abari Atomic Layer Deposition of Metal Oxide Thin Films on Metallic Substrates , 2012 .

[19]  H. Conrad,et al.  Influence of annealing in H atmosphere on the electrical properties of Al2O3 layers grown on p-type Si by the atomic layer deposition technique , 2016 .

[20]  Michael S. McConnell,et al.  Atomic layer deposition of Al2O3 for single electron transistors utilizing Pt oxidation and reduction , 2016 .

[21]  Frank R Libsch,et al.  Ni-NiO-Ni tunnel junctions for terahertz and infrared detection. , 2005, Applied optics.

[22]  S. Franssila,et al.  Investigation of sub-nm ALD aluminum oxide films by plasma assisted etch-through , 2008 .

[23]  First-principles study of adhesion at C u / S i O 2 interfaces , 2003, cond-mat/0304459.

[24]  K. Sonoda,et al.  Electron trap level of hydrogen incorporated nitrogen vacancies in silicon nitride , 2015 .

[25]  B. Chamberland,et al.  A new high pressure form of PtO2 , 1984 .

[26]  Steven M. George,et al.  Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates , 2002 .

[27]  C.A.M. Knechten Plasma oxidation for magnetic tunnel junctions , 2005 .

[28]  M. Furlan,et al.  Why the long-term charge offset drift in Si single-electron tunneling transistors is much smaller (better) than in metal-based ones: Two-level fluctuator stability , 2008 .

[29]  Chang Hwan Choi,et al.  Plasma atomic layer deposited TiN metal gate for three dimensional device applications: Deposition temperature, capping metal and post annealing , 2012 .

[30]  Luis Rodríguez-Fernández,et al.  Hydrogen plasma etching of silicon dioxide in a hollow cathode system , 2010 .

[31]  S. Kano,et al.  Random telegraph signals by alkanethiol-protected Au nanoparticles in chemically assembled single-electron transistors , 2013 .

[32]  Wolf,et al.  Background charge noise in metallic single-electron tunneling devices. , 1996, Physical review. B, Condensed matter.

[33]  A. Nazarov Hydrogen plasma treatment of silicon thin-film structures and nanostructured layers , 2008 .

[35]  B. Kim,et al.  Synthesis and related kinetics of nanocrystalline Ni by hydrogen reduction of NiO , 2001 .

[36]  Fabrication of metallic single electron transistors featuring plasma enhanced atomic layer deposition of tunnel barriers , 2015 .

[37]  J. Wagner,et al.  In situ Reduction and Oxidation of Nickel from Solid Oxide Fuel Cells in a Transmission Electron Microscope , 2009 .

[38]  Granular electronic systems , 2006, cond-mat/0603522.

[39]  C. Beenakker,et al.  Theory of Coulomb-blockade oscillations in the conductance of a quantum dot. , 1991, Physical review. B, Condensed matter.

[40]  Nasir Alimardani,et al.  Advancing MIM Electronics: Amorphous Metal Electrodes , 2011, Advanced materials.

[41]  J. Simmons Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film , 1963 .

[42]  High aspect ratio features in poly(methylglutarimide) using electron beam lithography and solvent developers , 2012 .

[43]  R. Schoelkopf,et al.  Noise performance of the radio-frequency single-electron transistor , 2003 .

[44]  J. Whitehead,et al.  Plasma-assisted reduction of a NiO/Al2O3 catalyst in atmospheric pressure H2/Ar dielectric barrier discharge , 2013 .

[45]  E. Vianello,et al.  Explanation of the Charge Trapping Properties of Silicon Nitride Storage Layers for NVMs—Part II: Atomistic and Electrical Modeling , 2011, IEEE Transactions on Electron Devices.

[46]  R. Buhrman,et al.  Ultrathin aluminum oxide tunnel barriers. , 2002, Physical review letters.

[47]  Strong cotunneling suppression in a single-electron transistor with granulated metal film island , 2006 .

[48]  Robert I. Shekhter,et al.  Kinetic phenomena and charge discreteness effects in granulated media , 1975 .

[49]  W. Chu,et al.  Effect of glow discharge plasma treatment on the performance of Ni/SiO2 catalyst in CO2 methanation , 2013 .

[50]  David A. Muller,et al.  Correlation of annealing effects on local electronic structure and macroscopic electrical properties for HfO2 deposited by atomic layer deposition , 2003 .