Opto-mechanical force measurement of deep sub-wavelength plasmonic modes

Spatial mapping of optical force near the hot-spot of a metal-dielectric-metal bow-tie nanoantenna at a wavelength of 1550 nm is presented. Non contact mode atomic force microscopy is used with a lock-in method to produce the map. Maxwell's stress tensor method has also been used to simulate the force produced by the bow-tie and it agrees with the experimental data. If dual lock-in amplifiers are used, this method could potentially produce the near field intensity and optical force map simultaneously, both with high spatial resolution. Detailed mapping of the optical force is critical for many emerging applications such as plasmonic biosensing and optomechanical switching.

[1]  A. Zelenina,et al.  Parallel and selective trapping in a patterned plasmonic landscape , 2007, 2007 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics.

[2]  A. Ashkin,et al.  Optical trapping and manipulation of single cells using infrared laser beams , 1987, Nature.

[3]  Hongxing Xu,et al.  Surface-plasmon-enhanced optical forces in silver nanoaggregates. , 2002, Physical review letters.

[4]  M. Roukes,et al.  Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. , 2007, Nature nanotechnology.

[5]  F. J. García de abajo,et al.  Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas. , 2009, Nano letters.

[6]  Daniel E. Prober,et al.  Optical antenna: Towards a unity efficiency near-field optical probe , 1997 .

[7]  Romain Quidant,et al.  Self -induced back-action optical trapping of dielectric nanoparticles , 2009 .

[8]  Dynamic measurement and modeling of the Casimir force at the nanometer scale , 2010 .

[9]  R. Gelfand,et al.  Nanocavity plasmonic device for ultrabroadband single molecule sensing. , 2009, Optics letters.

[10]  Hooman Mohseni,et al.  Towards an Integrated Chip-Scale Plasmonic Biosensor , 2011 .

[11]  Kishan Dholakia,et al.  Optical forces near a nanoantenna , 2010 .

[12]  Giovanni Volpe,et al.  Surface plasmon radiation forces. , 2006, Physical review letters.

[13]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[14]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[15]  Hooman Mohseni,et al.  An apertureless near-field scanning optical microscope for imaging surface plasmons in the mid-wave infrared , 2010, Optical Engineering + Applications.

[16]  A. Bonakdar,et al.  Quantum-cascade laser integrated with a metal-dielectric-metal-based plasmonic antenna. , 2010, Optics letters.

[17]  A. Bonakdar,et al.  Composite Nano-Antenna Integrated With Quantum Cascade Laser , 2010, IEEE Photonics Technology Letters.

[18]  Wilfried Noell,et al.  Development of 1 × 4 MEMS-based optical switch , 2004 .

[19]  F. Keilmann,et al.  Pure optical contrast in scattering‐type scanning near‐field microscopy , 2001, Journal of microscopy.

[20]  Ahmed Busnaina,et al.  Monopole antenna arrays for optical trapping, spectroscopy, and sensing , 2011 .

[21]  K. Neuman,et al.  Optical trapping. , 2004, The Review of scientific instruments.

[22]  K. T. Gahagan,et al.  Optical vortex trapping of particles , 1996, Summaries of papers presented at the Conference on Lasers and Electro-Optics.

[23]  Steven G. Johnson,et al.  Virtual photons in imaginary time: Computing exact Casimir forces via standard numerical electromagnetism techniques , 2007, 0705.3661.

[24]  Hooman Mohseni,et al.  An opto-electro-mechanical infrared photon detector with high internal gain at room temperature. , 2009, Optics express.

[25]  Hooman Mohseni,et al.  Opto-mechanical force mapping of deep subwavelength plasmonic modes. , 2011, Nano letters.

[26]  D. Griffiths Introduction to Electrodynamics , 2017 .

[27]  H. Rubinsztein-Dunlop,et al.  Optical force field mapping in microdevices. , 2006, Lab on a chip.

[28]  Sebastian J Maerkl,et al.  Integration of plasmonic trapping in a microfluidic environment. , 2009, Optics express.