NEW NUMEROV-TYPE METHODS FOR COMPUTING EIGENVALUES, RESONANCES, AND PHASE SHIFTS OF THE RADIAL SCHRODINGER EQUATION

A new family of P-stable two-step Numerov-type methods with minimal phase lag are developed for the numerical integration of the eigenvalue-resonance and phase shift problem of the one-dimensional Schrodinger equation. A new embedding technique to control the phase-lag error is introduced. Application to various potentials indicates that these new methods are generally more accurate than other previously developed finite-difference methods. © 1997 John Wiley & Sons, Inc. Int J Quant Chem 62: 467–475, 1997

[1]  A. D. Raptis,et al.  A four-step phase-fitted method for the numerical integration of second order initial-value problems , 1991 .

[2]  Veerle Fack,et al.  Numerical methods for solving radial Schro¨dinger equations , 1989 .

[3]  Majida Kobeissi,et al.  On testing difference equations for the diatomic eigenvalue problem , 1988 .

[4]  T. E. Simos,et al.  Numerical integration of the one-dimensional Schro¨dinger equations , 1990 .

[5]  Majida Kobeissi,et al.  A new variable step method for the numerical integration of the one-dimensional Schro¨dinger equation , 1988 .

[6]  John P. Coleman Numerical Methods for y″ =f(x, y) via Rational Approximations for the Cosine , 1989 .

[7]  J. Tellinghuisen An improved method for the direct computation of diatomic centrifugal distortion constants , 1987 .

[8]  M. M. Chawla,et al.  Two-step fourth-order P-stable methods with phase-lag of order six for y ″=( t,y ) , 1986 .

[9]  Ali El-Hajj,et al.  On computing eigenvalues of the Schrodinger equation for symmetrical potentials , 1989 .

[10]  A. Wagner,et al.  Comparison of perturbation and direct-numerical-integration techniques for the calculation of phase shifts for elastic scattering , 1974 .

[11]  J. Killingbeck,et al.  Shooting methods for the Schrodinger equation , 1987 .

[12]  A. D. Raptis,et al.  A high order method for the numerical integration of the one-dimensional Schrödinger equation , 1984 .

[13]  L. Brusa,et al.  A one‐step method for direct integration of structural dynamic equations , 1980 .

[14]  Tom E. Simos An explicit almost P-stable two-step method with phase-lag of order infinity for the numerical integration of second-order pacific initial-value problems , 1992 .

[15]  R. L. Roy,et al.  On calculating phase shifts and performing fits to scattering cross sections or transport properties , 1978 .

[16]  G. Kroes,et al.  The royal road to an energy-conserving predictor-corrector method , 1992 .

[17]  Ben P. Sommeijer,et al.  Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions , 1987 .

[18]  A. D. Raptis,et al.  A variable step method for the numerical integration of the one-dimensional Schrödinger equation , 1985 .

[19]  Theodore E. Simos,et al.  A two-step method with phase-lag of order infinity for the numerical integration of second order periodic initial-value problem , 1991, Int. J. Comput. Math..

[20]  T. E. Simos,et al.  Some new Numerov-type methods with minimal phase lag for the numerical integration of the radial Schrödinger equation , 1994 .

[21]  T. E. Simos Predictor-corrector phase-fitted methods for Y{double_prime} = F(X,Y) and an application to the Schroedinger equation , 1995 .

[22]  M. M. Chawla,et al.  An explicit sixth-order method with phase-lag of order eight for y ″= f ( t , y ) , 1987 .

[23]  M. Rizea,et al.  A numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies , 1980 .

[24]  M H Chawla,et al.  A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value , 1986 .

[25]  J. Hutson Centrifugal distortion constants for diatomic molecules: an improved computational method , 1981 .