Haze production rates in super-Earth and mini-Neptune atmosphere experiments

[1]  S. Hörst,et al.  Carbon Monoxide Affecting Planetary Atmospheric Chemistry , 2017, 1705.08468.

[2]  M. Marley,et al.  Sulfur Hazes in Giant Exoplanet Atmospheres: Impacts on Reflected Light Spectra , 2017, 1701.00318.

[3]  Roxana Lupu,et al.  FORWARD AND INVERSE MODELING OF THE EMISSION AND TRANSMISSION SPECTRUM OF GJ 436B: INVESTIGATING METAL ENRICHMENT, TIDAL HEATING, AND CLOUDS , 2016, 1610.07632.

[4]  T. Evans,et al.  A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion , 2015, Nature.

[5]  Kerri Cahoy,et al.  THERMAL EMISSION AND REFLECTED LIGHT SPECTRA OF SUPER EARTHS WITH FLAT TRANSMISSION SPECTRA , 2015, 1511.01492.

[6]  Drake Deming,et al.  THE TRANSITING EXOPLANET SURVEY SATELLITE: SIMULATIONS OF PLANET DETECTIONS AND ASTROPHYSICAL FALSE POSITIVES , 2015, 1506.03845.

[7]  Sara Seager,et al.  PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. III. PHOTOCHEMISTRY AND THERMOCHEMISTRY IN THICK ATMOSPHERES ON SUPER EARTHS AND MINI NEPTUNES , 2014, 1401.0948.

[8]  Drake Deming,et al.  Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b , 2013, Nature.

[9]  M. Tolbert,et al.  THE EFFECT OF CARBON MONOXIDE ON PLANETARY HAZE FORMATION , 2013, 1312.5651.

[10]  F. Selsis,et al.  The atmospheric chemistry of the warm Neptune GJ 3470b: Influence of metallicity and temperature on the CH4/CO ratio , 2013, 1312.5163.

[11]  D. Deming,et al.  A featureless transmission spectrum for the Neptune-mass exoplanet GJ 436b , 2013, Nature.

[12]  T. Barman,et al.  COMPOSITIONAL DIVERSITY IN THE ATMOSPHERES OF HOT NEPTUNES, WITH APPLICATION TO GJ 436b , 2013, The Astrophysical journal.

[13]  Christoph Mordasini,et al.  A FRAMEWORK FOR CHARACTERIZING THE ATMOSPHERES OF LOW-MASS LOW-DENSITY TRANSITING PLANETS , 2013, 1306.4329.

[14]  F. Fressin,et al.  THE FALSE POSITIVE RATE OF KEPLER AND THE OCCURRENCE OF PLANETS , 2013, 1301.0842.

[15]  R. Freedman,et al.  CHEMICAL CONSEQUENCES OF THE C/O RATIO ON HOT JUPITERS: EXAMPLES FROM WASP-12b, CoRoT-2b, XO-1b, AND HD 189733b , 2012, The Astrophysical journal.

[16]  J. Jimenez,et al.  Nitrogen incorporation in CH(4)-N(2) photochemical aerosol produced by far ultraviolet irradiation. , 2012, Astrobiology.

[17]  P. Willis,et al.  Titan tholins: simulating Titan organic chemistry in the Cassini-Huygens era. , 2012, Chemical reviews.

[18]  L. Schaefer,et al.  VAPORIZATION OF THE EARTH: APPLICATION TO EXOPLANET ATMOSPHERES , 2011, 1108.4660.

[19]  J. Fortney,et al.  THE ATMOSPHERIC CHEMISTRY OF GJ 1214b: PHOTOCHEMISTRY AND CLOUDS , 2011, 1104.5477.

[20]  G. Vasisht,et al.  THERMOCHEMICAL AND PHOTOCHEMICAL KINETICS IN COOLER HYDROGEN-DOMINATED EXTRASOLAR PLANETS: A METHANE-POOR GJ436b? , 2011, 1104.3183.

[21]  Nikole K. Lewis,et al.  DISEQUILIBRIUM CARBON, OXYGEN, AND NITROGEN CHEMISTRY IN THE ATMOSPHERES OF HD 189733b AND HD 209458b , 2011, 1102.0063.

[22]  Hiroshi Imanaka,et al.  Formation of nitrogenated organic aerosols in the Titan upper atmosphere , 2010, Proceedings of the National Academy of Sciences.

[23]  Cyril Szopa,et al.  Titan's Atmosphere: An Optimal Gas Mixture for Aerosol Production? , 2010 .

[24]  J. Jimenez,et al.  Reduction in haze formation rate on prebiotic Earth in the presence of hydrogen. , 2009, Astrobiology.

[25]  S. Seager,et al.  Ranges of Atmospheric Mass and Composition of Super-Earth Exoplanets , 2008 .

[26]  Christopher P McKay,et al.  Haze aerosols in the atmosphere of early Earth: manna from heaven. , 2004, Astrobiology.

[27]  F. Raulin,et al.  Organic syntheses from CH4−N2 atmospheres: Implications for Titan , 1982, Origins of life.

[28]  J. Lunine,et al.  Reflected Spectra and Albedos of Extrasolar Giant Planets. I. Clear and Cloudy Atmospheres , 1998, astro-ph/9810073.

[29]  A. Bar-Nun,et al.  Photochemical reactions of water and carbon monoxide in Earth's primitive atmosphere , 1983 .

[30]  S. Miller A production of amino acids under possible primitive earth conditions. , 1953, Science.