Multi Objective Particle Swarm Optimization: A Survey

In this current scenario, choosing any one choice among multiple conflicting objective is became the common problem. These problems are considered to be solved through the decision being made for the given objective is best compromising solution i.e. the solution satisfying all the objectives. Particle swarm optimization is one of meta-heuristic mechanism being used to find solution from the solution space. It belongs to evolutionary algorithm as it is population based optimization technique which figured out to be efficient, effective, flexible and easy implementation. Changes have been made in original particle swarm optimization techniques result in better solutions for multi objective optimization problems. This paper provides the basic known concepts of multi objective optimization as well as of particle swarm optimization. This results in better understanding of the concept of multi objective particle swarm optimization. Here, we also discussed the concepts of multi objective particle swarm optimization, techniques used in multi objective particle swarm optimization, approaches applied in multi objective particle swarm optimization and some of the future related work directions are also being included. Keywords—Multi objective particle swarm optimization(MOPSO); Multi objective optimization problems(MOOPs); Particle swarm optimization(PSO); Pareto optimality; Pareto front.

[1]  Gary G. Yen,et al.  Cultural-based particle swarm for dynamic optimisation problems , 2012, Int. J. Syst. Sci..

[2]  Gary G. Yen,et al.  Ranking many-objective Evolutionary Algorithms using performance metrics ensemble , 2013, 2013 IEEE Congress on Evolutionary Computation.

[3]  Andries Petrus Engelbrecht,et al.  A Cooperative approach to particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[4]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[5]  Andrzej Osyczka,et al.  7 – Multicriteria optimization for engineering design , 1985 .

[6]  Jiao Li-cheng,et al.  Intelligent particle swarm optimization in multiobjective optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[7]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[8]  James Kennedy,et al.  Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[9]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[10]  M. Clerc,et al.  The swarm and the queen: towards a deterministic and adaptive particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[11]  Mark M. Millonas,et al.  Swarms, Phase Transitions, and Collective Intelligence , 1993, adap-org/9306002.

[12]  Andrzej Ameljańczyk,et al.  Multicriteria Optimization in Engineering Design , 1994 .

[13]  Michael N. Vrahatis,et al.  Multi-Objective Particles Swarm Optimization Approaches , 2008 .

[14]  M Reyes Sierra,et al.  Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art , 2006 .

[15]  Carlos A. Coello Coello,et al.  A proposal to use stripes to maintain diversity in a multi-objective particle swarm optimizer , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[16]  Andries Petrus Engelbrecht,et al.  Fundamentals of Computational Swarm Intelligence , 2005 .

[17]  Tapabrata Ray,et al.  A Swarm Metaphor for Multiobjective Design Optimization , 2002 .

[18]  Xiaodong Li,et al.  A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization , 2003, GECCO.

[19]  Saúl Zapotecas Martínez,et al.  A multi-objective particle swarm optimizer based on decomposition , 2011, GECCO '11.

[20]  Carlos A. Coello Coello,et al.  An Introduction to Multi-Objective Particle Swarm Optimizers , 2011 .

[21]  Kalyanmoy Deb,et al.  An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.

[22]  Russell C. Eberhart,et al.  Recent advances in particle swarm , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[23]  Wang Hu,et al.  Density estimation for selecting leaders and mantaining archive in MOPSO , 2013, 2013 IEEE Congress on Evolutionary Computation.

[24]  Jürgen Teich,et al.  Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO) , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[25]  R. W. Dobbins,et al.  Computational intelligence PC tools , 1996 .

[26]  C. Coello,et al.  Improving PSO-based Multi-Objective Optimization using Crowding , Mutation and �-Dominance , 2005 .

[27]  Shiu Yin Yuen,et al.  A Multiobjective Evolutionary Algorithm That Diversifies Population by Its Density , 2012, IEEE Transactions on Evolutionary Computation.

[28]  Michael N. Vrahatis,et al.  Recent approaches to global optimization problems through Particle Swarm Optimization , 2002, Natural Computing.

[29]  Xiaodong Li,et al.  Better Spread and Convergence: Particle Swarm Multiobjective Optimization Using the Maximin Fitness Function , 2004, GECCO.

[30]  Yuhui Shi,et al.  Particle swarm optimization: developments, applications and resources , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[31]  Jonathan E. Rowe,et al.  Particle swarm optimization and fitness sharing to solve multi-objective optimization problems , 2005, 2005 IEEE Congress on Evolutionary Computation.

[32]  Yaochu Jin,et al.  Dynamic Weighted Aggregation for evolutionary multi-objective optimization: why does it work and how? , 2001 .

[33]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[34]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[35]  Prospero C. Naval,et al.  An effective use of crowding distance in multiobjective particle swarm optimization , 2005, GECCO '05.

[36]  Daniel Merkle,et al.  A New Multi-objective Particle Swarm Optimization Algorithm Using Clustering Applied to Automated Docking , 2005, Hybrid Metaheuristics.

[37]  Tian Hou Seow,et al.  Particle swarm inspired evolutionary algorithm (PS-EA) for multiobjective optimization problems , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[38]  赵波,et al.  Multiple objective particle swarm optimization technique for economic load dispatch , 2005 .

[39]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[40]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[41]  Martin Middendorf,et al.  A hierarchical particle swarm optimizer , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[42]  Shuyuan Yang,et al.  A quantum particle swarm optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[43]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[44]  Jonathan E. Fieldsend,et al.  A MOPSO Algorithm Based Exclusively on Pareto Dominance Concepts , 2005, EMO.

[45]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[46]  C.A. Coello Coello,et al.  MOPSO: a proposal for multiple objective particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[47]  D.H. Werner,et al.  Particle swarm optimization versus genetic algorithms for phased array synthesis , 2004, IEEE Transactions on Antennas and Propagation.

[48]  A.A. Abido,et al.  Particle swarm optimization for multimachine power system stabilizer design , 2001, 2001 Power Engineering Society Summer Meeting. Conference Proceedings (Cat. No.01CH37262).

[49]  Carlos A. Coello Coello,et al.  A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques , 1999, Knowledge and Information Systems.

[50]  Derek A. Linkens,et al.  Adaptive Weighted Particle Swarm Optimisation for Multi-objective Optimal Design of Alloy Steels , 2004, PPSN.

[51]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[52]  John Fulcher,et al.  Computational Intelligence: An Introduction , 2008, Computational Intelligence: A Compendium.

[53]  E. Ozcan,et al.  Particle swarm optimization: surfing the waves , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[54]  E. Polak,et al.  On Multicriteria Optimization , 1976 .

[55]  M.N. Vrahatis,et al.  Particle swarm optimizers for Pareto optimization with enhanced archiving techniques , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[56]  Xiaohua Liu,et al.  Solving multi objective optimization problems using particle swarm optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..