Geometrical aspects of expansions in complex bases

We study the set of the representable numbers in base $q=pe^{i\frac{2\pi}{n}}$ with ρ>1 and n∈ℕ and with digits in an arbitrary finite real alphabet A. We give a geometrical description of the convex hull of the representable numbers in base q and alphabet A and an explicit characterization of its extremal points. A characterizing condition for the convexity of the set of representable numbers is also shown.

[1]  William J. Gilbert,et al.  Geometry of Radix Representations , 1981 .

[2]  Christiane Frougny,et al.  On-line multiplication in real and complex base , 2003, Proceedings 2003 16th IEEE Symposium on Computer Arithmetic.

[3]  Donald E. Knuth,et al.  A imaginary number system , 1960, Commun. ACM.

[4]  N. Koblitz Towards a Quarter-Century of Public Key Cryptography , 2000, Springer US.

[5]  Daniel Piché Complex Bases, Number Systems and Their Application to Fractal-Wavelet Image Coding , 2002 .

[6]  Marco Pedicini Greedy expansions and sets with deleted digits , 2005, Theor. Comput. Sci..

[7]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[8]  Walter Penney,et al.  A ``Binary'' System for Complex Numbers , 1965, JACM.

[9]  Juan Pineda,et al.  A parallel algorithm for polygon rasterization , 1988, SIGGRAPH.

[10]  Paul S. Heckbert,et al.  Graphics gems IV , 1994 .

[11]  Jerome A. Solinas,et al.  Efficient Arithmetic on Koblitz Curves , 2000, Des. Codes Cryptogr..

[12]  Shigeki Akiyama,et al.  A Survey on Topological Properties of Tiles Related to Number Systems , 2004 .

[13]  I. Kátai,et al.  Canonical number systems in imaginary quadratic fields , 1981 .

[14]  William J. Gilbert,et al.  Arithmetic in Complex Bases , 1984 .

[15]  Vilmos Komornik,et al.  Expansions in Complex Bases , 2007, Canadian Mathematical Bulletin.

[16]  Graham A. Jullien,et al.  Complexity and Fast Algorithms for Multiexponentiations , 2000, IEEE Trans. Computers.