The Extended Symplectic Pencil and the Finite-Horizon LQ Problem With Two-Sided Boundary Conditions

This technical note introduces a new approach to the solution of a very general class of finite-horizon optimal control problems for discrete-time systems. This approach provides a parametric expression for the optimal control sequences, as well as the corresponding optimal state trajectories, by exploiting a new decomposition of the so-called extended symplectic pencil. This decomposition provides an original strategy for a more direct solution of the problem with no need of the system-theoretic hypotheses (including regularity of the symplectic pencil) that have always been assumed in the literature so far.

[1]  Vlad Ionescu,et al.  Generalized Riccati theory and robust control , 1999 .

[2]  Lorenzo Ntogramatzidis,et al.  Comments on "Structural Invariant Subspaces of Singular Hamiltonian Systems and Nonrecursive Solutions of Finite-Horizon Optimal Control Problems" , 2012, IEEE Trans. Autom. Control..

[3]  A. Saberi,et al.  The discrete algebraic Riccati equation and linear matrix inequality , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[4]  Harald K. Wimmer,et al.  Existence and uniqueness of unmixed solutions of the discrete-time algebraic Riccati equation , 2003, Syst. Control. Lett..

[5]  Elena Zattoni Structural Invariant Subspaces of Singular Hamiltonian Systems and Nonrecursive Solutions of Finite-Horizon Optimal Control Problems , 2008, IEEE Transactions on Automatic Control.

[6]  Lorenzo Ntogramatzidis,et al.  The Generalised Discrete Algebraic Riccati Equation in LQ optimal control , 2012, 1201.3704.

[7]  Athanasios Sideris,et al.  A Riccati approach for constrained linear quadratic optimal control , 2011, Int. J. Control.

[8]  Wook Hyun Kwon,et al.  LQ tracking controls with fixed terminal states and their application to receding horizon controls , 2008, Syst. Control. Lett..

[9]  M. Shayman Geometry of the Algebraic Riccati Equation, Part I , 1983 .

[10]  Leiba Rodman,et al.  Algebraic Riccati equations , 1995 .

[11]  Per Hagander,et al.  How to Decompose Semi-definite Discrete-Time Algebraic Riccati Equations , 1999, Eur. J. Control.

[12]  Mark A. Shayman,et al.  Geometry of the Algebraic Riccati Equation, Part II , 1983 .

[13]  Lorenzo Ntogramatzidis,et al.  Employing the algebraic Riccati equation for a parametrization of the solutions of the finite-horizon LQ problem: the discrete-time case , 2005, Syst. Control. Lett..

[14]  Giovanni Marro,et al.  A parametrization of the solutions of the Hamiltonian system for stabilizable pairs , 2005 .

[15]  C. Oara,et al.  Generalized Riccati Theory and Robust Control. A Popov Function Approach , 1999 .

[16]  Augusto Ferrante,et al.  On the structure of the solutions of discrete-time algebraic Riccati equation with singular closed-loop matrix , 2004, IEEE Transactions on Automatic Control.

[17]  H. Wimmer,et al.  ORDER REDUCTION OF DISCRETE-TIME ALGEBRAIC RICCATI EQUATIONS WITH SINGULAR CLOSED LOOP MATRIX , 2007 .

[18]  Vlad Ionescu,et al.  Generalized Discrete-Time Riccati Theory , 1996 .

[19]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[20]  Lorenzo Ntogramatzidis,et al.  The generalised discrete algebraic Riccati equation in linear-quadratic optimal control , 2013, Autom..

[21]  P. Dooren The Computation of Kronecker's Canonical Form of a Singular Pencil , 1979 .

[22]  Lorenzo Ntogramatzidis,et al.  A unified approach to finite-horizon generalized LQ optimal control problems for discrete-time systems☆ , 2007 .

[23]  Harry L. Trentelman,et al.  Control theory for linear systems , 2002 .

[24]  Victor M. Becerra,et al.  Optimal control , 2008, Scholarpedia.

[25]  Lorenzo Ntogramatzidis,et al.  A parametrization of the solutions of the finite-horizon LQ problem with general cost and boundary conditions , 2005, Autom..