Loading the Antenna Gap with Two-Dimensional Electron Gas Transistors: A Versatile Approach for the Rectification of Free-Space Radiation

Light conversion into dc current is of paramount interest for a wide range of upcoming energy applications. Here we integrated dipole antennas with field-effect transistors based on a two-dimensional electron gas, with the specific aim of rectifying free-space radiation exploiting both artificial and natural nonlinearities. In the present work, resonant conditions of antenna-coupled field-effect rectifiers have been identified in a terahertz experiment based on the well-established GaAs transistor technology. Rectification of free-space radiation has been observed in a broad 0.15–0.40 THz range by implementing quasi-optical coupling with a substrate lens to an AlGaAs/GaAs heterostructure transistor into the gap of a cross-dipole antenna. The short- and the open-circuit resonances have been clearly identified through a comparison between experimental photocurrent spectra, electromagnetic simulations, and antenna models. The former depends only on the dipole antenna geometry, while the latter is determined ...

[1]  Pascal Royer,et al.  Tuning of an optical dimer nanoantenna by electrically controlling its load impedance. , 2009, Nano letters.

[2]  W. Knap,et al.  Terahertz responsivity of field effect transistors versus their static channel conductivity and loading effects , 2011 .

[3]  A. Ferrari,et al.  Graphene field-effect transistors as room-temperature terahertz detectors. , 2012, Nature materials.

[4]  Ulrich Hohenester,et al.  Tailoring spatiotemporal light confinement in single plasmonic nanoantennas. , 2012, Nano letters.

[5]  Thomas L. Bougher,et al.  A carbon nanotube optical rectenna. , 2015, Nature nanotechnology.

[6]  Javier Aizpurua,et al.  Controlling the near-field oscillations of loaded plasmonic nanoantennas , 2009 .

[7]  Thomas Härtling,et al.  Surface-enhanced infrared spectroscopy using nanometer-sized gaps. , 2014, ACS nano.

[8]  Anthony Centeno,et al.  The rectenna device: From theory to practice (a review) , 2014 .

[9]  Fan Wang,et al.  Single nanowire photoconductive terahertz detectors. , 2015, Nano letters.

[10]  Sascha Preu,et al.  Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity , 2012 .

[11]  D Coquillat,et al.  Nanometer size field effect transistors for terahertz detectors , 2013, Nanotechnology.

[12]  F. Evangelisti,et al.  Downconversion of terahertz radiation due to intrinsic hydrodynamic nonlinearity of a two-dimensional electron plasma , 2015 .

[13]  R. Olmon,et al.  Antenna–load interactions at optical frequencies: impedance matching to quantum systems , 2012, Nanotechnology.

[14]  D. Schaubert,et al.  Dipole and slot elements and arrays on semi-infinite substrates , 1985 .

[15]  David Shrekenhamer,et al.  High speed terahertz modulation from metamaterials with embedded high electron mobility transistors. , 2011, Optics express.

[16]  M. Shur,et al.  Nonresonant Detection of Terahertz Radiation in Field Effect Transistors , 2002 .

[17]  Gregory C. Dyer,et al.  Transmission line theory of collective plasma excitations in periodic two-dimensional electron systems: Finite plasmonic crystals and Tamm states , 2012, 1211.6081.

[18]  W. Knap,et al.  Heterostructured hBN‐BP‐hBN Nanodetectors at Terahertz Frequencies , 2016, Advanced materials.

[19]  Jing Kong,et al.  Broad electrical tuning of graphene-loaded plasmonic antennas. , 2013, Nano letters.

[20]  J. Cox,et al.  Electrically tunable nonlinear plasmonics in graphene nanoislands , 2014, Nature Communications.

[21]  M. Ryzhii,et al.  Emission and Detection of Terahertz Radiation Using Two-Dimensional Electrons in III–V Semiconductors and Graphene , 2013, IEEE Transactions on Terahertz Science and Technology.

[22]  O. Muskens,et al.  Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas. , 2007, Nano letters.

[23]  F. Xia,et al.  Graphene photodetectors for high-speed optical communications , 2010, 1009.4465.

[24]  Mark W. Knight,et al.  Aluminum plasmonic nanoantennas. , 2012, Nano letters.

[25]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[26]  R. Morandotti,et al.  Extremely large extinction efficiency and field enhancement in terahertz resonant dipole nanoantennas. , 2011, Optics express.

[27]  Cristiano D'Andrea,et al.  Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy. , 2013, ACS nano.

[28]  T. Murphy,et al.  Pulsed Near-IR Photoresponse in a Bi-metal Contacted Graphene Photodetector , 2015, Scientific Reports.

[29]  P. Biagioni,et al.  Dynamics of four-photon photoluminescence in gold nanoantennas. , 2011, Nano letters.

[30]  V. M. Muravev,et al.  Plasmonic detector/spectrometer of subterahertz radiation based on two-dimensional electron system with embedded defect , 2012 .

[31]  Kang L. Wang,et al.  High-speed graphene transistors with a self-aligned nanowire gate , 2010, Nature.

[32]  P. Avouris,et al.  Photodetectors based on graphene, other two-dimensional materials and hybrid systems. , 2014, Nature nanotechnology.

[33]  Andrea Alù,et al.  Tuning the scattering response of optical nanoantennas with nanocircuit loads , 2008 .

[34]  Andrea Alù,et al.  Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. , 2007, Physical review letters.

[35]  Minghui Hong,et al.  Broadband Terahertz Sensing on Spoof Plasmon Surfaces , 2014 .

[36]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[37]  Study of the Coupling of Terahertz Radiation to Heterostructure Transistors with a Free Electron Laser Source , 2009 .

[38]  Vittorio Foglietti,et al.  Terahertz current oscillations in a gated two-dimensional electron gas with antenna integrated at the channel ends , 2012 .

[39]  Annemarie Pucci,et al.  Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. , 2008, Physical review letters.

[40]  David R. Smith,et al.  Control of radiative processes using tunable plasmonic nanopatch antennas. , 2014, Nano letters.

[41]  Mikhail I. Dyakonov,et al.  Field Effect Transistors for Terahertz Detection: Physics and First Imaging Applications , 2009, 0907.2523.

[42]  Peter J. Burke,et al.  High frequency conductivity of the high-mobility two-dimensional electron gas , 2000 .

[43]  John L. Reno,et al.  Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals , 2013, Nature Photonics.

[44]  Michael S. Shur,et al.  Tuning of ungated plasmons by a gate in the field-effect transistor with two-dimensional electron channel , 2008 .

[45]  Lei Liu,et al.  A 570-630 GHz FREQUENCY DOMAIN TERAHERTZ SPECTROSCOPY SYSTEM BASED ON A BROADBAND QUASI-OPTICAL ZERO BIAS SCHOTTKY DIODE DETECTOR , 2011 .

[46]  G. Hanson Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene , 2007, cond-mat/0701205.

[47]  R. Casini,et al.  Three-dimensional shaping of sub-micron GaAs Schottky junctions for zero-bias terahertz rectification , 2011 .

[48]  David L. Kaplan,et al.  Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays , 2009, Proceedings of the National Academy of Sciences.

[49]  S. Winnerl,et al.  CMOS Integrated Antenna-Coupled Field-Effect Transistors for the Detection of Radiation From 0.2 to 4.3 THz , 2012, IEEE Transactions on Microwave Theory and Techniques.

[50]  R. Weikle,et al.  On Estimating and Canceling Parasitic Capacitance in Submillimeter-Wave Planar Schottky Diodes , 2009, IEEE Microwave and Wireless Components Letters.

[51]  Alvydas Lisauskas,et al.  Heterodyne and subharmonic mixing at 0.6 THz in an AlGaAs/InGaAs/AlGaAs heterostructure field effect transistor , 2013 .

[52]  H. Roskos,et al.  Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene. , 2014, Nano letters.

[53]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[54]  Jong Chul Ye,et al.  Enhancement of terahertz pulse emission by optical nanoantenna. , 2012, ACS nano.

[55]  Francesco De Angelis,et al.  Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots. , 2015, Nano letters.

[56]  F. Angelis,et al.  Dark to Bright Mode Conversion on Dipolar Nanoantennas: A Symmetry-Breaking Approach , 2014 .

[57]  C. N. Lau,et al.  Tunable Plasmonic Reflection by Bound 1D Electron States in a 2D Dirac Metal. , 2016, Physical review letters.

[58]  Edward S. Barnard,et al.  Photocurrent mapping of near-field optical antenna resonances. , 2011, Nature nanotechnology.

[59]  Andrea Alù,et al.  Effects of shape and loading of optical nanoantennas on their sensitivity and radiation properties , 2011 .

[60]  P. Biagioni,et al.  Nanoantennas for visible and infrared radiation , 2011, Reports on progress in physics. Physical Society.