Polysaccharide-block-polypeptide copolymer vesicles: towards synthetic viral capsids.

Natural inspiration: Amphiphilic polysaccharide-block-polypeptide copolymers were synthesized by click chemistry from dextran end-functionalized with an alkyne group and poly(gamma-benzyl L-glutamate) end-functionalized with an azide group. The ability of these copolymers to self-assemble into small vesicles (see picture) suggests the possibility of a new generation of drug- and gene-delivery systems whose structure mimics that of viruses.

[1]  Jean-François Lutz,et al.  1,3-dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science. , 2007, Angewandte Chemie.

[2]  T. Satoh,et al.  Glycoconjugated polymer. 4. Synthesis and aggregation property of well-defined end-functionalized polystyrene with β-cyclodextrin , 2003 .

[3]  R. Field,et al.  Emerging glycomics technologies. , 2007, Nature chemical biology.

[4]  Daniel A. Hammer,et al.  Molecular Weight Dependence of Polymersome Membrane Structure, Elasticity, and Stability , 2002 .

[5]  A. Zhang,et al.  Micellar Aggregates of Amylose-block-polystyrene Rod−Coil Block Copolymers in Water and THF , 2005 .

[6]  Markus Antonietti,et al.  The formation of polymer vesicles or "peptosomes" by polybutadiene-block-poly(L-glutamate)s in dilute aqueous solution. , 2002, Journal of the American Chemical Society.

[7]  K. Johnston,et al.  Drug nanoparticles by antisolvent precipitation: mixing energy versus surfactant stabilization. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[8]  D. Haddleton,et al.  Well-defined oligosaccharide-terminated polymers from living radical polymerization. , 2000, Biomacromolecules.

[9]  Eric P. Holowka,et al.  Charged polypeptide vesicles with controllable diameter. , 2005, Journal of the American Chemical Society.

[10]  Ian W. Hamley Nanotechnologie mit weichen Materialien , 2003 .

[11]  K. Kataoka,et al.  Synthesis of Diblock Copolymers Consisting of Hyaluronan and Poly(2-ethyl-2-oxazoline) , 2005 .

[12]  C. Alexander,et al.  Sweet talking double hydrophilic block copolymer vesicles. , 2008, Angewandte Chemie.

[13]  P. Couvreur,et al.  Radical Emulsion Polymerization of Alkylcyanoacrylates Initiated by the Redox System Dextran-Cerium(IV) under Acidic Aqueous Conditions , 2003 .

[14]  R. Borch,et al.  Cyanohydridoborate anion as a selective reducing agent , 1971 .

[15]  D. Taton,et al.  Synthesis of block copolypeptides by click chemistry , 2008 .

[16]  Pál,et al.  Dextran: A promising macromolecular drug carrier , 2006 .

[17]  K. Akiyoshi,et al.  Enzymatic synthesis and characterization of amphiphilic block copolymers of poly(ethylene oxide) and amylose , 1999 .

[18]  J. Lutz 1,3‐Dipolare Cycloaddition von Aziden und Alkinen: eine universelle Ligationsmethode in den Polymer‐ und Materialwissenschaften , 2007 .

[19]  F. Winnik,et al.  Synthesis, reactivity, and pH-responsive assembly of new double hydrophilic block copolymers of carboxymethyldextran and poly(ethylene glycol) , 2007 .

[20]  H. Schlaad,et al.  An easy way to sugar-containing polymer vesicles or glycosomes. , 2006, Journal of the American Chemical Society.

[21]  A. Bangham,et al.  Diffusion of univalent ions across the lamellae of swollen phospholipids. , 1965, Journal of molecular biology.

[22]  Shuguang Zhang Fabrication of novel biomaterials through molecular self-assembly , 2003, Nature Biotechnology.

[23]  D. Savin,et al.  Role of secondary structure changes on the morphology of polypeptide-based block copolymer vesicles. , 2008, Journal of colloid and interface science.

[24]  Li‐Ming Zhang,et al.  Preparation of a polysaccharide–polyester diblock copolymer and its micellar characteristics , 2007 .

[25]  I. Hamley,et al.  Nanotechnology with soft materials. , 2003, Angewandte Chemie.

[26]  H. Klok,et al.  Water-soluble stimuli-responsive vesicles from peptide-based diblock copolymers. , 2002, Angewandte Chemie.

[27]  S. Nikiforow,et al.  Diagnostic and therapeutic potential of poly(benzyl L-glutamate). , 1994, Journal of pharmaceutical sciences.

[28]  D. Taton,et al.  A versatile synthetic approach to polypeptide based rod : coil block copolymers by click chemistry , 2007 .

[29]  D. Taton,et al.  Micelles and polymersomes obtained by self-assembly of dextran and polystyrene based block copolymers. , 2009, Biomacromolecules.

[30]  Elizabeth H C Bromley,et al.  Peptide and protein building blocks for synthetic biology: from programming biomolecules to self-organized biomolecular systems. , 2008, ACS chemical biology.

[31]  Dennis E. Discher,et al.  Polymer vesicles : Materials science: Soft surfaces , 2002 .

[32]  D. Hammer,et al.  Polymersomes: tough vesicles made from diblock copolymers. , 1999, Science.

[33]  W. Binder,et al.  ‘Click’ Chemistry in Polymer and Materials Science , 2007 .

[34]  J. V. van Hest,et al.  Modular synthesis of block copolymers via cycloaddition of terminal azide and alkyne functionalized polymers. , 2005, Chemical communications.

[35]  W. Norde,et al.  Synthesis and interfacial behavior of polystyrene-polysaccharide diblock copolymers , 2003 .

[36]  Thomas Hirt,et al.  Polymerized ABA Triblock Copolymer Vesicles , 2000 .

[37]  Xuesi Chen,et al.  Direct formation of giant vesicles from synthetic polypeptides. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[38]  E. Korn,et al.  Single bilayer liposomes prepared without sonication. , 1973, Biochimica et biophysica acta.

[39]  B. Gallot,et al.  Block copolymers with a polyvinyl and a polypeptide block: factors governing the folding of the polypeptide chains , 1982 .

[40]  A. Müller,et al.  New routes to the synthesis of amylose-block-polystyrene rod-coil block copolymers. , 2002, Biomacromolecules.

[41]  F. Bates,et al.  Electromechanical limits of polymersomes. , 2001, Physical review letters.

[42]  F. Bates,et al.  From Membranes to Melts, Rouse to Reptation: Diffusion in Polymersome versus Lipid Bilayers , 2002 .

[43]  Daniel T Kamei,et al.  Polyarginine segments in block copolypeptides drive both vesicular assembly and intracellular delivery. , 2007, Nature materials.

[44]  D. Taton,et al.  Synthesis of ATRP-induced dextran-b-polystyrene diblock copolymers and preliminary investigation of their self-assembly in water. , 2007, Chemical communications.

[45]  D. Hammer,et al.  Bioresorbable Vesicles Formed through Spontaneous Self-Assembly of Amphiphilic Poly(ethylene oxide)-block-polycaprolactone. , 2006, Macromolecules.

[46]  U. Seifert,et al.  Hyperviscous diblock copolymer vesicles , 2002 .

[47]  O. Ikkala,et al.  Architecturally induced multiresponsive vesicles from well-defined polypeptides: formation of gene vehicles. , 2007, Biomacromolecules.

[48]  Dennis E. Discher,et al.  Polymersomes as viral capsid mimics , 2006 .

[49]  Sébastien Lecommandoux,et al.  Reversible inside-out micellization of pH-responsive and water-soluble vesicles based on polypeptide diblock copolymers. , 2005, Journal of the American Chemical Society.

[50]  Jan Skov Pedersen,et al.  Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting , 1997 .

[51]  R. Marchant,et al.  Novel Polysaccharide Surfactants: Synthesis of Model Compounds and Dextran-Based Surfactants , 1994 .

[52]  S. Chakrabarti,et al.  Aggregation of poly(γ‐benzyl‐α,L‐glutamate) , 1984 .

[53]  K. Loos,et al.  Synthesis of Amylose-block-polystyrene Rod-Coil Block Copolymers , 1997 .

[54]  B. Pfannemüller,et al.  Linear and star‐shaped hybrid polymers, 2 Coupling of mono‐ and oligosaccharides to α,ω‐diamino substituted poly(oxyethylene) and multifunctional amines by amide linkage , 1984 .