Vision-based follow-the-leader

We consider the problem of having a group of nonholonomic mobile robots equipped with omnidirectional cameras maintain a desired leader-follower formation. Our approach is to translate the formation control problem from the configuration space into a separate visual servoing task for each follower. We derive the questions of motion of the leader in the image plane of the follower and propose two control schemes for the follower. The first one is based on feedback linearization and is either string stable or leader-to-formation stable, depending on the sensing capabilities of the followers. The second one assumes a kinematic model for the evolution of the leader velocities and combines a Luenberger observer with a linear control law that is locally stable. We present simulation results evaluating our vision-based follow-the-leader control strategies.

[1]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[2]  Karsten P. Ulland,et al.  Vii. References , 2022 .

[3]  H. Sussmann,et al.  Limits of highly oscillatory controls and the approximation of general paths by admissible trajectories , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[4]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[5]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[6]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[7]  J. Hedrick,et al.  String stability of interconnected systems , 1996, IEEE Trans. Autom. Control..

[8]  Kostas Daniilidis,et al.  A Unifying Theory for Central Panoramic Systems and Practical Applications , 2000, ECCV.

[9]  Peter J Seiler,et al.  Mesh stability of unmanned aerial vehicle clusters , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[10]  Vijay Kumar,et al.  Modeling and control of formations of nonholonomic mobile robots , 2001, IEEE Trans. Robotics Autom..

[11]  Xiaoming Hu,et al.  Formation constrained multi-agent control , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[12]  Vijay Kumar,et al.  Real-time vision-based control of a nonholonomic mobile robot , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[13]  G. Inalhan,et al.  Decentralized overlapping control of a formation of unmanned aerial vehicles , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[14]  Vijay Kumar,et al.  The effect of feedback and feedforward on formation ISS , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[15]  Camillo J. Taylor,et al.  A vision-based formation control framework , 2002, IEEE Trans. Robotics Autom..

[16]  Vijay Kumar,et al.  Cooperative Control of Robot Formations , 2002 .

[17]  Daniel E. Koditschek,et al.  Visual servoing via navigation functions , 2002, IEEE Trans. Robotics Autom..

[18]  Maja J. Mataric,et al.  A general algorithm for robot formations using local sensing and minimal communication , 2002, IEEE Trans. Robotics Autom..

[19]  J. A. Fax,et al.  Graph Laplacians and Stabilization of Vehicle Formations , 2002 .

[20]  S. Shankar Sastry,et al.  Multibody motion estimation and segmentation from multiple central panoramic views , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[21]  S. Shankar Sastry,et al.  Formation control of nonholonomic mobile robots with omnidirectional visual servoing and motion segmentation , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[22]  Vijay Kumar,et al.  Leader-to-formation stability , 2004, IEEE Transactions on Robotics and Automation.