Primitive Words and Lyndon Words in Automatic and Linearly Recurrent Sequences

We investigate questions related to the presence of primitive words and Lyndon words in automatic and linearly recurrent sequences. We show that the Lyndon factorization of a k-automatic sequence is itself k-automatic. We also show that the function counting the number of primitive factors (resp., Lyndon factors) of length n in a k-automatic sequence is k-regular. Finally, we show that the number of Lyndon factors of a linearly recurrent sequence is bounded.

[1]  Fabien Durand,et al.  Linearly recurrent subshifts have a finite number of non-periodic subshift factors , 2000, Ergodic Theory and Dynamical Systems.

[2]  Jeffrey Shallit,et al.  The Subword Complexity of k-Automatic Sequences is k-Synchronized , 2012, arXiv.org.

[3]  Jeffrey Shallit,et al.  Automatic Sequences by Jean-Paul Allouche , 2003 .

[4]  Fabien Durand,et al.  A characterization of substitutive sequences using return words , 1998, Discret. Math..

[5]  Guy Melançon,et al.  Lyndon Factorization of Infinite Words , 1996, STACS.

[6]  Jeffrey Shallit,et al.  Automatic Sequences: Theory, Applications, Generalizations , 2003 .

[7]  Jean Pierre Duval,et al.  Factorizing Words over an Ordered Alphabet , 1983, J. Algorithms.

[8]  Jeffrey Shallit,et al.  Enumeration and Decidable Properties of Automatic Sequences , 2011, Developments in Language Theory.

[9]  Rani Siromoney,et al.  Infinite Lyndon Words , 1994, Inf. Process. Lett..

[10]  Daniel Goc,et al.  Automatic Theorem-Proving in Combinatorics on Words , 2012, Int. J. Found. Comput. Sci..

[11]  Patrice Séébold Lyndon factorization of the Prouhet words , 2003, Theor. Comput. Sci..

[12]  Jeffrey Shallit,et al.  Periodicity, repetitions, and orbits of an automatic sequence , 2008, Theor. Comput. Sci..

[13]  Jeffrey Shallit,et al.  k-Automatic Sets of Rational Numbers , 2012, LATA.

[14]  J. Shallit,et al.  Automatic Sequences: Contents , 2003 .

[15]  Jeffrey Shallit The Critical Exponent is Computable for Automatic Sequences , 2011, WORDS.

[16]  Christian F. Skau,et al.  Substitutional dynamical systems, Bratteli diagrams and dimension groups , 1999, Ergodic Theory and Dynamical Systems.

[17]  Anton Cerný Lyndon factorization of generalized words of Thue , 2002, Discret. Math. Theor. Comput. Sci..

[18]  Guy Melançon,et al.  Lyndon factorization of the Thue-Morse word and its relatives , 1997, Discret. Math. Theor. Comput. Sci..

[19]  Jeffrey Shallit,et al.  The ring of k-regular sequences, II , 2003, Theor. Comput. Sci..

[20]  Jeffrey Shallit,et al.  The Ring of k-Regular Sequences , 1990, Theor. Comput. Sci..

[21]  Alan Cobham,et al.  Uniform tag sequences , 1972, Mathematical systems theory.