Evaluation of the response of plastic scintillator bars and measurement of neutron capture time in non-reactor environment for the ISMRAN experiment

[1]  D. K. Mishra,et al.  A new technique to enhance the position resolution of large area plastic scinitillators to reconstruct the cosmic muon tracks , 2022, Journal of Instrumentation.

[2]  D. K. Mishra,et al.  Cosmic rays measurements using the ISMRAN setup in a non-reactor environment , 2021, Astroparticle Physics.

[3]  D. K. Mishra,et al.  Measurements using a prototype array of plastic scintillator bars for reactor based electron anti-neutrino detection , 2021, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[4]  D. K. Mishra,et al.  Characterization of plastic scintillator bars using fast neutrons from D-D and D-T reactions , 2021, Journal of Instrumentation.

[5]  D. Svirida DANSS experiment: current status and future plans , 2020, Journal of Physics: Conference Series.

[6]  L. Pant,et al.  Active-sterile neutrino mixing constraints using reactor antineutrinos with the ISMRAN setup , 2020, 2007.00392.

[7]  P. T. Surukuchi,et al.  Improved short-baseline neutrino oscillation search and energy spectrum measurement with the PROSPECT experiment at HFIR , 2020, 2006.11210.

[8]  K. Joo,et al.  Search for Sub-eV Sterile Neutrinos at RENO. , 2020, Physical review letters.

[9]  L. Pant,et al.  Machine learning technique to improve anti-neutrino detection efficiency for the ISMRAN experiment , 2020, Journal of Instrumentation.

[10]  V. Savu,et al.  Improved sterile neutrino constraints from the STEREO experiment with 179 days of reactor-on data , 2019, 1912.06582.

[11]  J. G. Kim,et al.  Observation of reactor antineutrino disappearance using delayed neutron capture on hydrogen at RENO , 2019, Journal of High Energy Physics.

[12]  M. Wurm,et al.  Gamma-ray spectra from thermal neutron capture on gadolinium-155 and natural gadolinium , 2019, Progress of Theoretical and Experimental Physics.

[13]  J. Napolitano,et al.  Measurement of Individual Antineutrino Spectra from $\mathbf{^{235}U}$ and $\mathbf{^{239}Pu}$ at Daya Bay , 2019, 1904.07812.

[14]  Y. F. Wang,et al.  A high precision calibration of the nonlinear energy response at Daya Bay , 2019, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[15]  P. T. Surukuchi,et al.  Measurement of the Antineutrino Spectrum from ^{235}U Fission at HFIR with PROSPECT. , 2018, Physical review letters.

[16]  The RENO Collaboration,et al.  Fuel-Composition Dependent Reactor Antineutrino Yield at RENO. , 2018, Physical review letters.

[17]  L. Pant,et al.  A plastic scintillator array for reactor based anti-neutrino studies , 2018, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[18]  Chang Wei Loh,et al.  Measurement of the Electron Antineutrino Oscillation with 1958 Days of Operation at Daya Bay. , 2018, Physical review letters.

[19]  J. H. Kim,et al.  Measurement of Reactor Antineutrino Oscillation Amplitude and Frequency at RENO. , 2018, Physical review letters.

[20]  I. G. Park,et al.  Spectral measurement of the electron antineutrino oscillation amplitude and frequency using 500 live days of RENO data , 2016, Physical Review D.

[21]  G F Cao,et al.  Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay. , 2017, Physical review letters.

[22]  P. Huber NEOS Data and the Origin of the 5 MeV Bump in the Reactor Antineutrino Spectrum. , 2016, Physical review letters.

[23]  B. Han,et al.  Sterile Neutrino Search at the NEOS Experiment. , 2016, Physical review letters.

[24]  A. Olshevsky,et al.  DANSS: Detector of the reactor AntiNeutrino based on Solid Scintillator , 2016, 1606.02896.

[25]  E. Mccutchan,et al.  Effects of Fission Yield Data in the Calculation of Antineutrino Spectra for ^{235}U(n,fission) at Thermal and Fast Neutron Energies. , 2016, Physical review letters.

[26]  M. Gautier,et al.  Online Monitoring of the Osiris Reactor with the Nucifer Neutrino Detector , 2015, 1509.05610.

[27]  P. T. Surukuchi,et al.  Background Radiation Measurements at High Power Research Reactors , 2015, 1506.03547.

[28]  G F Cao,et al.  Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay , 2014, Physical review letters.

[29]  J. I. Crespo-Anadón,et al.  Improved measurements of the neutrino mixing angle θ13 with the Double Chooz detector , 2014, 1406.7763.

[30]  M. Minowa,et al.  Reactor antineutrino monitoring with a plastic scintillator array as a new safeguards method , 2014, 1404.7309.

[31]  I. G. Park,et al.  Observation of reactor electron antineutrinos disappearance in the RENO experiment. , 2012, Physical review letters.

[32]  L. Y. Wang,et al.  Observation of electron-antineutrino disappearance at Daya Bay. , 2012, Physical review letters.

[33]  M. Toups,et al.  Indication for the disappearance of reactor electron antineutrinos in the Double Chooz experiment , 2011, 1112.6353.

[34]  P. Huber Determination of antineutrino spectra from nuclear reactors , 2011, 1106.0687.

[35]  A. Letourneau,et al.  The reactor antineutrino anomaly , 2011, 1101.2755.

[36]  S. Cormon,et al.  Improved Predictions of Reactor Antineutrino Spectra , 2011, 1101.2663.

[37]  C. Winant,et al.  Experimental results from an antineutrino detector for cooperative monitoring of nuclear reactors , 2006, physics/0612152.

[38]  Kanchhi Singh,et al.  Dhruva : Main design features, operational experience and utilization , 2006 .

[39]  J. Beacom,et al.  Measuring the cosmic ray muon-induced fast neutron spectrum by (n,p) isotope production reactions in underground detectors , 2005, hep-ph/0504227.

[40]  A. Dell'Acqua,et al.  Geant4 - A simulation toolkit , 2003 .

[41]  F. Bečvář,et al.  Simulation of γ cascades in complex nuclei with emphasis on assessment of uncertainties of cascade-related quantities , 1998 .

[42]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[43]  P. Vogel Analysis of the antineutrino capture on protons , 1984 .

[44]  Richard Madey,et al.  Improved predections of neutron detection efficiency for hydrocarbon scintillators from 1 MeV to about 300 MeV , 1979 .

[45]  E. Lorch Neutron spectra of 241Am-B, 241Am-Be, 241Am-F, 242Cm-Be, 238Pu-13C and 252Cf isotopic neutron sources. , 1973, The International journal of applied radiation and isotopes.

[46]  F. B. Harrison,et al.  Detection of the Free Neutrino: a Confirmation. , 1956, Science.