Simulation of Multispecies Desmoplastic Cancer Growth via a Fully Adaptive Non-linear Full Multigrid Algorithm

A fully adaptive non-linear full multigrid (FMG) algorithm is implemented to computationally simulate a model of multispecies desmoplastic tumor growth in three spatial dimensions. The algorithm solves a thermodynamic mixture model employing a diffuse interface approach with Cahn-Hilliard-type fourth-order equations that are coupled, non-linear, and numerically stiff. The tumor model includes extracellular matrix (ECM) as a major component with elastic energy contribution in its chemical potential term. Blood and lymphatic vasculatures are simulated via continuum representations. The model employs advection-reaction-diffusion partial differential equations (PDEs) for the cell, ECM, and vascular components, and reaction-diffusion PDEs for the elements diffusing from the vessels. This study provides the details of the numerical solution obtained by applying the fully adaptive non-linear FMG algorithm with finite difference method to solve this complex system of PDEs. The results indicate that this type of computational model can simulate the extracellular matrix-rich desmoplastic tumor microenvironment typical of fibrotic tumors, such as pancreatic adenocarcinoma.

[1]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[2]  John W. Cahn,et al.  Free Energy of a Nonuniform System. II. Thermodynamic Basis , 1959 .

[3]  Lydia Kronsjö,et al.  On the design of nested iterations for elliptic difference equations , 1972 .

[4]  J. H. Gibbs,et al.  Molecular theory of surface tension , 1975 .

[5]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[6]  J. S. Rowlinson,et al.  Translation of J. D. van der Waals' “The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density” , 1979 .

[7]  Isidore Rigoutsos,et al.  An algorithm for point clustering and grid generation , 1991, IEEE Trans. Syst. Man Cybern..

[8]  S. V. Sotirchos,et al.  Mathematical modelling of microenvironment and growth in EMT6/Ro multicellular tumour spheroids , 1992, Cell proliferation.

[9]  Ulrich Rüde,et al.  Fully adaptive multigrid methods , 1993 .

[10]  Marsha Berger,et al.  Three-Dimensional Adaptive Mesh Refinement for Hyperbolic Conservation Laws , 1994, SIAM J. Sci. Comput..

[11]  M. Chaplain Avascular growth, angiogenesis and vascular growth in solid tumours: The mathematical modelling of the stages of tumour development , 1996 .

[12]  Perry H Leo,et al.  A diffuse interface model for microstructural evolution in elastically stressed solids , 1998 .

[13]  M. Chaplain,et al.  Continuous and discrete mathematical models of tumor-induced angiogenesis , 1998, Bulletin of mathematical biology.

[14]  B. Sleeman,et al.  A mathematical model for the roles of pericytes and macrophages in the initiation of angiogenesis. I. The role of protease inhibitors in preventing angiogenesis. , 2000, Mathematical biosciences.

[15]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[16]  B. Sleeman,et al.  Mathematical modeling of the onset of capillary formation initiating angiogenesis , 2001, Journal of mathematical biology.

[17]  B. Sleeman,et al.  Mathematical modeling of capillary formation and development in tumor angiogenesis: Penetration into the stroma , 2001 .

[18]  H. Byrne,et al.  The role of cell-cell interactions in a two-phase model for avascular tumour growth , 2002, Journal of mathematical biology.

[19]  L. Preziosi,et al.  ON THE CLOSURE OF MASS BALANCE MODELS FOR TUMOR GROWTH , 2002 .

[20]  Helen M Byrne,et al.  A multiphase model describing vascular tumour growth , 2003, Bulletin of mathematical biology.

[21]  L. Preziosi,et al.  Modelling Solid Tumor Growth Using the Theory of Mixtures , 2001, Mathematical medicine and biology : a journal of the IMA.

[22]  Helen M. Byrne,et al.  A two-phase model of solid tumour growth , 2003, Appl. Math. Lett..

[23]  D L S McElwain,et al.  A history of the study of solid tumour growth: The contribution of mathematical modelling , 2004, Bulletin of mathematical biology.

[24]  H. Othmer,et al.  Mathematical modeling of tumor-induced angiogenesis , 2004, Journal of mathematical biology.

[25]  C. Schaller,et al.  MATHEMATICAL MODELLING OF GLIOBLASTOMA TUMOUR DEVELOPMENT: A REVIEW , 2005 .

[26]  Junseok Kim,et al.  Phase field modeling and simulation of three-phase flows , 2005 .

[27]  D. L. Sean McElwain,et al.  A Mixture Theory for the Genesis of Residual Stresses in Growing Tissues I: A General Formulation , 2005, SIAM J. Appl. Math..

[28]  H. Garcke On a Cahn-Hilliard model for phase separation with elastic misfit , 2005 .

[29]  D. L. Sean McElwain,et al.  A Mixture Theory for the Genesis of Residual Stresses in Growing Tissues II: Solutions to the Biphasic Equations for a Multicell Spheroid , 2005, SIAM J. Appl. Math..

[30]  Alissa M. Weaver,et al.  Mathematical modeling of cancer: the future of prognosis and treatment. , 2005, Clinica chimica acta; international journal of clinical chemistry.

[31]  L. Coussens,et al.  Tumor stroma and regulation of cancer development. , 2006, Annual review of pathology.

[32]  L. Coussens,et al.  The inflammatory tumor microenvironment and its impact on cancer development. , 2006, Contributions to microbiology.

[33]  P. Maini,et al.  Modelling aspects of cancer dynamics: a review , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[34]  Luigi Preziosi,et al.  Mechanics in Tumor Growth , 2007 .

[35]  Steven M. Wise,et al.  Solving the regularized, strongly anisotropic Cahn-Hilliard equation by an adaptive nonlinear multigrid method , 2007, J. Comput. Phys..

[36]  H. Frieboes,et al.  Computer simulation of glioma growth and morphology , 2007, NeuroImage.

[37]  S. Jonathan Chapman,et al.  Mathematical Models of Avascular Tumor Growth , 2007, SIAM Rev..

[38]  H. Frieboes,et al.  Three-dimensional multispecies nonlinear tumor growth--I Model and numerical method. , 2008, Journal of theoretical biology.

[39]  M. Chaplain,et al.  Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. , 2008 .

[40]  L. Preziosi,et al.  Multiphase models of tumour growth , 2008 .

[41]  T. Whiteside The tumor microenvironment and its role in promoting tumor growth , 2008, Oncogene.

[42]  P. Tracqui,et al.  Biophysical models of tumour growth , 2009 .

[43]  Luigi Preziosi,et al.  Contact inhibition of growth described using a multiphase model and an individual cell based model , 2009, Appl. Math. Lett..

[44]  Mauro Ferrari,et al.  Multiparameter computational modeling of tumor invasion. , 2009, Cancer research.

[45]  M. Perez-Moreno,et al.  When neighbourhood matters: tumour microenvironment , 2009, Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico.

[46]  L. Preziosi,et al.  Cell adhesion mechanisms and stress relaxation in the mechanics of tumours , 2009, Biomechanics and modeling in mechanobiology.

[47]  Wolfgang Alt,et al.  Continuum model of cell adhesion and migration , 2009, Journal of mathematical biology.

[48]  Luigi Preziosi,et al.  Multiphase and Multiscale Trends in Cancer Modelling , 2009 .

[49]  Luigi Preziosi,et al.  Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications , 2009, Journal of mathematical biology.

[50]  Pamela K. Kreeger,et al.  Cancer systems biology: a network modeling perspective , 2009, Carcinogenesis.

[51]  Vittorio Cristini,et al.  Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach , 2010 .

[52]  L Preziosi,et al.  An elasto-visco-plastic model of cell aggregates. , 2010, Journal of theoretical biology.

[53]  Paolo Vineis,et al.  Third version: response to reviewers , 2010 .

[54]  H. Byrne Dissecting cancer through mathematics: from the cell to the animal model , 2010, Nature Reviews Cancer.

[55]  J. Tinsley Oden,et al.  GENERAL DIFFUSE-INTERFACE THEORIES AND AN APPROACH TO PREDICTIVE TUMOR GROWTH MODELING , 2010 .

[56]  D. Bresch,et al.  Computational Modeling of Solid Tumor Growth: The Avascular Stage , 2010, SIAM J. Sci. Comput..

[57]  K. Rejniak,et al.  Current trends in mathematical modeling of tumor–microenvironment interactions: a survey of tools and applications , 2010, Experimental biology and medicine.

[58]  H. Frieboes,et al.  Nonlinear modelling of cancer: bridging the gap between cells and tumours , 2010, Nonlinearity.

[59]  Gary R. Mirams,et al.  A hybrid approach to multi-scale modelling of cancer , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[60]  Vittorio Cristini,et al.  Three-dimensional multispecies nonlinear tumor growth-II: Tumor invasion and angiogenesis. , 2010, Journal of theoretical biology.

[61]  James A. Eddy,et al.  In silico models of cancer , 2010, Wiley interdisciplinary reviews. Systems biology and medicine.

[62]  M. Ferrari,et al.  What does physics have to do with cancer? , 2011, Nature Reviews Cancer.

[63]  Mark A. J. Chaplain,et al.  Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation , 2011, Journal of mathematical biology.

[64]  Clément Chatelain,et al.  Morphological changes in early melanoma development: influence of nutrients, growth inhibitors and cell-adhesion mechanisms. , 2011, Journal of theoretical biology.

[65]  Vittorio Cristini,et al.  Physical oncology: a bench-to-bedside quantitative and predictive approach. , 2011, Cancer research.

[66]  Luigi Preziosi,et al.  A Multiphase Model of Tumour and Tissue Growth Including Cell Adhesion and Plastic Re-organisation , 2011 .

[67]  A. Anderson,et al.  Hybrid models of tumor growth , 2011, Wiley interdisciplinary reviews. Systems biology and medicine.

[68]  Mark A. J. Chaplain,et al.  Multiscale mathematical modelling in biology and medicine , 2011 .

[69]  Vittorio Cristini,et al.  Multiscale cancer modeling. , 2010, Annual review of biomedical engineering.

[70]  Steven M. Wise,et al.  An adaptive multigrid algorithm for simulating solid tumor growth using mixture models , 2011, Math. Comput. Model..

[71]  Kristoffer G. van der Zee,et al.  Numerical simulation of a thermodynamically consistent four‐species tumor growth model , 2012, International journal for numerical methods in biomedical engineering.

[72]  U Klingmüller,et al.  Predictive mathematical models of cancer signalling pathways , 2012, Journal of internal medicine.

[73]  Analysis of a two-phase model describing the growth of solid tumors , 2012, European Journal of Applied Mathematics.

[74]  Min Wu,et al.  The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems. , 2013, Journal of theoretical biology.

[75]  Cass T. Miller,et al.  A multiphase model for three-dimensional tumor growth , 2013, New journal of physics.

[76]  Ken Ito,et al.  An Integrated Computational/Experimental Model of Lymphoma Growth , 2013, PLoS Comput. Biol..

[77]  L Preziosi,et al.  A review of mathematical models for the formation of vascular networks. , 2013, Journal of theoretical biology.

[78]  K. Psiuk-Maksymowicz,et al.  Multiphase modelling of desmoplastic tumour growth. , 2013, Journal of theoretical biology.

[79]  M. Swartz Immunomodulatory Roles of Lymphatic Vessels in Cancer Progression , 2014, Cancer Immunology Research.

[80]  Ying Chen,et al.  Tumor growth in complex, evolving microenvironmental geometries: a diffuse domain approach. , 2014, Journal of theoretical biology.

[81]  Mauro Ferrari,et al.  Three phase flow dynamics in tumor growth , 2014 .

[82]  M Ferrari,et al.  A tumor growth model with deformable ECM , 2014, Physical biology.

[83]  Mark F. Adams,et al.  Chombo Software Package for AMR Applications Design Document , 2014 .

[84]  Steven M. Wise,et al.  A stable scheme for a nonlinear, multiphase tumor growth model with an elastic membrane , 2014, International journal for numerical methods in biomedical engineering.

[85]  Václav Klika,et al.  A Guide through Available Mixture Theories for Applications , 2014 .

[86]  Luigi Preziosi,et al.  A multiphase model of tumour segregation in situ by a heterogeneous extracellular matrix , 2015 .

[87]  Yusheng Feng,et al.  Toward Predictive Multiscale Modeling of Vascular Tumor Growth , 2015, Archives of Computational Methods in Engineering.

[88]  Hermann B Frieboes,et al.  Model of vascular desmoplastic multispecies tumor growth. , 2017, Journal of theoretical biology.