Quorum sensing: cell-to-cell communication in bacteria.

Bacteria communicate with one another using chemical signal molecules. As in higher organisms, the information supplied by these molecules is critical for synchronizing the activities of large groups of cells. In bacteria, chemical communication involves producing, releasing, detecting, and responding to small hormone-like molecules termed autoinducers . This process, termed quorum sensing, allows bacteria to monitor the environment for other bacteria and to alter behavior on a population-wide scale in response to changes in the number and/or species present in a community. Most quorum-sensing-controlled processes are unproductive when undertaken by an individual bacterium acting alone but become beneficial when carried out simultaneously by a large number of cells. Thus, quorum sensing confuses the distinction between prokaryotes and eukaryotes because it enables bacteria to act as multicellular organisms. This review focuses on the architectures of bacterial chemical communication networks; how chemical information is integrated, processed, and transduced to control gene expression; how intra- and interspecies cell-cell communication is accomplished; and the intriguing possibility of prokaryote-eukaryote cross-communication.

[1]  W. Hamilton The genetical evolution of social behaviour. I. , 1964, Journal of theoretical biology.

[2]  A. Tomasz,et al.  REGULATION OF THE TRANSFORMABILITY OF PHEUMOCOCCAL CULTURES BY MACROMOLECULAR CELL PRODUCTS. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[3]  J. Bonner,et al.  Identification of Adenosine-3′,5′-Monophosphate as the Bacterial Attractant for Myxamoebae of Dictyostelium discoideum , 1969, Journal of bacteriology.

[4]  A. Tomasz,et al.  Protoplast formation and leakage of intramembrane cell components: induction by the competence activator substance of pneumococci , 1975, Journal of bacteriology.

[5]  R. Kay,et al.  Cell differentiation without morphogenesis in Dictyostelium discoideum , 1976, Nature.

[6]  D. Morrison,et al.  Competence for genetic transformation in pneumococcus depends on synthesis of a small set of proteins , 1979, Nature.

[7]  K. Nealson,et al.  Bacterial bioluminescence: its control and ecological significance , 1979, Microbiological reviews.

[8]  C. Town,et al.  An oligosaccharide-containing factor that induces cell differentiation in Dictyostelium discoideum. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[9]  G L Kenyon,et al.  Structural identification of autoinducer of Photobacterium fischeri luciferase. , 1981, Biochemistry.

[10]  K. Nealson,et al.  Bacterial bioluminescence: Isolation and genetic analysis of functions from Vibrio fischeri , 1983, Cell.

[11]  M. Silverman,et al.  Identification of genes and gene products necessary for bacterial bioluminescence. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[12]  E. Greenberg,et al.  Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system , 1985, Journal of bacteriology.

[13]  W. Fresenius,et al.  Water Analysis: A Practical Guide to Physico-Chemical, Chemical, and Microbiological Water Examination and Quality Assurance , 1988 .

[14]  E. Meighen,et al.  Purification and structural identification of an autoinducer for the luminescence system of Vibrio harveyi. , 1989, The Journal of biological chemistry.

[15]  M. Nakano,et al.  The primary role of comA in establishment of the competent state in Bacillus subtilis is to activate expression of srfA , 1991, Journal of bacteriology.

[16]  M. Gambello,et al.  Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression , 1991, Journal of bacteriology.

[17]  M. Silverman,et al.  The luxR gene product of Vibrio harveyi is a transcriptional activator of the lux promoter , 1992, Journal of bacteriology.

[18]  G. Hayman,et al.  Opine catabolism and conjugal transfer of the nopaline Ti plasmid pTiC58 are coordinately regulated by a single repressor. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[19]  P. Murphy,et al.  Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones , 1993, Nature.

[20]  J. Kornblum,et al.  Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. , 1993, The EMBO journal.

[21]  B. Bassler,et al.  Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence , 1993, Molecular microbiology.

[22]  E. Greenberg,et al.  Synergistic binding of the Vibrio fischeri LuxR transcriptional activator domain and RNA polymerase to the lux promoter region , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[23]  B. Bassler,et al.  Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway , 1994, Molecular microbiology.

[24]  A. Grossman,et al.  Biochemical and genetic characterization of a competence pheromone from B. subtilis , 1994, Cell.

[25]  W. Fuqua,et al.  A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite , 1994, Journal of bacteriology.

[26]  E. Greenberg,et al.  Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[27]  A Fiechter,et al.  Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa , 1994, Journal of bacteriology.

[28]  P. Li,et al.  TraI, a LuxI homologue, is responsible for production of conjugation factor, the Ti plasmid N-acylhomoserine lactone autoinducer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[29]  B. Bassler,et al.  Sequence and function of LuxO, a negative regulator of luminescence in Vibrio harveyi , 1994, Molecular microbiology.

[30]  A. Grossman,et al.  Convergent sensing pathways mediate response to two extracellular competence factors in Bacillus subtilis. , 1995, Genes & development.

[31]  A. Grossman Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. , 1995, Annual review of genetics.

[32]  D. Morrison,et al.  An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[33]  F. Vandenesch,et al.  The agr P2 operon: an autocatalytic sensory transduction system in Staphylococcus aureus. , 1995, Molecular & general genetics : MGG.

[34]  R. Beavis,et al.  Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[35]  S. Farrand,et al.  A new regulatory element modulates homoserine lactone-mediated autoinduction of Ti plasmid conjugal transfer , 1995, Journal of bacteriology.

[36]  E. Greenberg,et al.  A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[37]  L. Moore,et al.  Genetic analysis of nonpathogenic Agrobacterium tumefaciens mutants arising in crown gall tumors , 1995, Journal of bacteriology.

[38]  Lixin Zhou,et al.  Competence for genetic transformation in Streptococcus pneumoniae: organization of a regulatory locus with homology to two lactococcin A secretion genes. , 1995, Gene.

[39]  B. Hölldobler,et al.  The chemistry of social regulation: multicomponent signals in ant societies. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[40]  P. Seed,et al.  Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: an autoinduction regulatory hierarchy , 1995, Journal of bacteriology.

[41]  C. Fuqua,et al.  Activity of the Agrobacterium Ti plasmid conjugal transfer regulator TraR is inhibited by the product of the traM gene , 1995, Journal of bacteriology.

[42]  Margret I. Moré,et al.  Enzymatic Synthesis of a Quorum-Sensing Autoinducer Through Use of Defined Substrates , 1996, Science.

[43]  S. Kjelleberg,et al.  Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling , 1996, Journal of bacteriology.

[44]  D. Morrison,et al.  Regulation of competence for genetic transformation in Streptococcus pneumoniae by an auto‐induced peptide pheromone and a two‐component regulatory system , 1996, Molecular microbiology.

[45]  A. Grossman,et al.  Purification and characterization of an extracellular peptide factor that affects two different developmental pathways in Bacillus subtilis. , 1996, Genes & development.

[46]  R. Siezen,et al.  Structural analysis and proteolytic activation of Enterococcus faecalis cytolysin, a novel lantibiotic , 1996, Molecular microbiology.

[47]  B. Shilo,et al.  A thousand and one roles for the Drosophila EGF receptor. , 1997, Trends in genetics : TIG.

[48]  J. M. Dow,et al.  A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule , 1997, Molecular microbiology.

[49]  A. Grossman,et al.  An Exported Peptide Functions Intracellularly to Contribute to Cell Density Signaling in B. subtilis , 1997, Cell.

[50]  M. Perego,et al.  A peptide export-import control circuit modulating bacterial development regulates protein phosphatases of the phosphorelay. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[51]  M. Schell,et al.  Identification of 3‐hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum , 1997, Molecular microbiology.

[52]  J. van Reeuwijk,et al.  Salmonella typhimurium Encodes an SdiA Homolog, a Putative Quorum Sensor of the LuxR Family, That Regulates Genes on the Virulence Plasmid , 1998, Journal of bacteriology.

[53]  G. Salmond,et al.  Cryptic carbapenem antibiotic production genes are widespread in Erwinia carotovora: facile trans activation by the carR transcriptional regulator. , 1998, Microbiology.

[54]  L. Shimkets Intercellular signaling during fruiting-body development of Myxococcus xanthus. , 1999, Annual review of microbiology.

[55]  D. Morrison,et al.  Identification of a New Regulator inStreptococcus pneumoniae Linking Quorum Sensing to Competence for Genetic Transformation , 1999, Journal of bacteriology.

[56]  B. Bassler,et al.  A genetic analysis of the function of LuxO, a two‐component response regulator involved in quorum sensing in Vibrio harveyi , 1999, Molecular microbiology.

[57]  Sequence and function of LuxU: a two-component phosphorelay protein that regulates quorum sensing in Vibrio harveyi. , 1999, Journal of bacteriology.

[58]  E. Greenberg,et al.  Acyl homoserine-lactone quorum-sensing signal generation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[59]  P. Dunlap,et al.  Acylhomoserine Lactone Synthase Activity of the Vibrio fischeri AinS Protein , 1999, Journal of bacteriology.

[60]  S. C. Winans,et al.  Autoinducer binding by the quorum-sensing regulator TraR increases affinity for target promoters in vitro and decreases TraR turnover rates in whole cells. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[61]  P. Rather,et al.  Providencia stuartii Genes Activated by Cell-to-Cell Signaling and Identification of a Gene Required for Production or Activity of an Extracellular Factor , 1999, Journal of bacteriology.

[62]  M. Surette,et al.  Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[63]  B. Bradley Levels of Selection, Altruism, and Primate Behavior , 1999, The Quarterly Review of Biology.

[64]  S. Rice,et al.  Quorum‐sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other Gram‐negative bacteria , 1999, Molecular microbiology.

[65]  E. Greenberg,et al.  Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[66]  B. Iglewski,et al.  Active Efflux and Diffusion Are Involved in Transport of Pseudomonas aeruginosa Cell-to-Cell Signals , 1999, Journal of bacteriology.

[67]  T. Muir,et al.  Structure-activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[68]  K. M. Lee,et al.  Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[69]  J. Strassmann,et al.  Altruism and social cheating in the social amoeba Dictyostelium discoideum , 2000, Nature.

[70]  C. Klämbt,et al.  EGF receptor signalling: The importance of presentation , 2000, Current Biology.

[71]  M. Teplitski,et al.  Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. , 2000, Molecular plant-microbe interactions : MPMI.

[72]  M. Otto,et al.  Inducible expression and cellular location of AgrB, a protein involved in the maturation of the staphylococcal quorum-sensing pheromone , 2000, Archives of Microbiology.

[73]  B. Bassler,et al.  A genetic analysis of the functions of LuxN: a two‐component hybrid sensor kinase that regulates quorum sensing in Vibrio harveyi , 2000, Molecular microbiology.

[74]  V. Sharov,et al.  Gene Expression Analysis of the Streptococcus pneumoniae Competence Regulons by Use of DNA Microarrays , 2000, Journal of bacteriology.

[75]  Edward G. Ruby,et al.  Vibrio fischeri lux Genes Play an Important Role in Colonization and Development of the Host Light Organ , 2000, Journal of bacteriology.

[76]  Lian-Hui Zhang,et al.  AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora , 2000 .

[77]  Jun Zhu,et al.  The Bases of Crown Gall Tumorigenesis , 2000, Journal of bacteriology.

[78]  B. Bassler,et al.  Regulation of quorum sensing in Vibrio harveyi by LuxO and Sigma‐54 , 2000, Molecular microbiology.

[79]  R. Kessin,et al.  Developmental cheating and the evolutionary biology of Dictyostelium and Myxococcus. , 2000, Microbiology.

[80]  E. P. Greenberg,et al.  Metabolism of Acyl-Homoserine Lactone Quorum-Sensing Signals by Variovorax paradoxus , 2000, Journal of bacteriology.

[81]  Social insects and selfish genes. , 2001, Biologist.

[82]  M. Surette,et al.  The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum‐sensing signal molecule , 2001, Molecular microbiology.

[83]  S. C. Winans,et al.  TrlR, a defective TraR‐like protein of Agrobacterium tumefaciens, blocks TraR function in vitro by forming inactive TrlR:TraR dimers , 2001, Molecular microbiology.

[84]  S. C. Winans,et al.  The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[85]  B. Bassler,et al.  The LuxS‐dependent autoinducer AI‐2 controls the expression of an ABC transporter that functions in AI‐2 uptake in Salmonella typhimurium , 2001, Molecular microbiology.

[86]  Lian-Hui Zhang,et al.  Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase , 2001, Nature.

[87]  W. D. de Vos,et al.  Gelatinase biosynthesis‐activating pheromone: a peptide lactone that mediates a quorum sensing in Enterococcus faecalis , 2001, Molecular microbiology.

[88]  E. Koonin,et al.  The rhomboids: a nearly ubiquitous family of intramembrane serine proteases that probably evolved by multiple ancient horizontal gene transfers , 2003, Genome Biology.

[89]  E. Ruby,et al.  LitR, a new transcriptional activator in Vibrio fischeri, regulates luminescence and symbiotic light organ colonization , 2002, Molecular microbiology.

[90]  B. Bassler,et al.  Structural identification of a bacterial quorum-sensing signal containing boron , 2002, Nature.

[91]  Bonnie L. Bassler,et al.  Quorum-sensing regulators control virulence gene expression in Vibrio cholerae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[92]  A. Eberhard,et al.  Characterization of the Sinorhizobium meliloti sinR/sinI Locus and the Production of Novel N-Acyl Homoserine Lactones , 2002, Journal of bacteriology.

[93]  John C. Anderson,et al.  Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA , 2002, Nature.

[94]  S. Kjelleberg,et al.  Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. , 2002, Microbiology.

[95]  R. Cortese,et al.  The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA , 2002, The EMBO journal.

[96]  C. Klämbt EGF Receptor Signalling: Roles of Star and Rhomboid Revealed , 2002, Current Biology.

[97]  M. Freeman,et al.  Conservation of Intramembrane Proteolytic Activity and Substrate Specificity in Prokaryotic and Eukaryotic Rhomboids , 2002, Current Biology.

[98]  A. Grossman,et al.  Characterization of comQ and comX, Two Genes Required for Production of ComX Pheromone in Bacillus subtilis , 2002, Journal of bacteriology.

[99]  D. Dubnau,et al.  Specific activation of the Bacillus quorum‐sensing systems by isoprenylated pheromone variants , 2002, Molecular microbiology.

[100]  M. Churchill,et al.  Structural basis and specificity of acyl-homoserine lactone signal production in bacterial quorum sensing. , 2002, Molecular cell.

[101]  F. Vandenesch,et al.  High Genetic Variability of the agr Locus in Staphylococcus Species , 2002, Journal of bacteriology.

[102]  J. Strassmann,et al.  The Many Selves of Social Insects , 2002, Science.

[103]  T. Muir,et al.  Key determinants of receptor activation in the agr autoinducing peptides of Staphylococcus aureus. , 2002, Biochemistry.

[104]  Bonnie L. Bassler,et al.  Parallel Quorum Sensing Systems Converge to Regulate Virulence in Vibrio cholerae , 2002, Cell.

[105]  P. Kylsten,et al.  A conserved mechanism for extracellular signaling in eukaryotes and prokaryotes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[106]  T. Muir,et al.  Reversible and Specific Extracellular Antagonism of Receptor-Histidine Kinase Signaling* , 2002, The Journal of Biological Chemistry.

[107]  Lian-Hui Zhang,et al.  Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[108]  M. Manefield,et al.  Quorum sensing in context: out of molecular biology and into microbial ecology. , 2002, Microbiology.

[109]  Leighton J. Core,et al.  TPR‐mediated interaction of RapC with ComA inhibits response regulator‐DNA binding for competence development in Bacillus subtilis , 2003, Molecular microbiology.

[110]  Ned S Wingreen,et al.  Vibrio harveyi quorum sensing: a coincidence detector for two autoinducers controls gene expression , 2003, The EMBO journal.

[111]  Competence-induced cells of Streptococcus pneumoniae lyse competence-deficient cells of the same strain during cocultivation. , 2003, Journal of bacteriology.

[112]  E. Greenberg,et al.  Identification, Timing, and Signal Specificity of Pseudomonas aeruginosa Quorum-Controlled Genes: a Transcriptome Analysis , 2003, Journal of bacteriology.

[113]  A. Brooks,et al.  Microarray Analysis of Pseudomonas aeruginosa Quorum-Sensing Regulons: Effects of Growth Phase and Environment , 2003, Journal of bacteriology.

[114]  E. Greenberg,et al.  The Vibrio fischeri quorum‐sensing systems ain and lux sequentially induce luminescence gene expression and are important for persistence in the squid host , 2003, Molecular microbiology.

[115]  S. Horinouchi,et al.  Signalling early developmental events in two highly diverged Streptomyces species , 2003, Molecular microbiology.

[116]  Say Leong Ong,et al.  Acyl‐homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum‐quenching enzymes , 2003, Molecular microbiology.

[117]  M. Surette,et al.  Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication , 2003, Molecular microbiology.

[118]  K. Failing,et al.  The epidemiology of Staphylococcus aureus infections from subclinical mastitis in dairy cows during a control programme. , 2003, Veterinary microbiology.

[119]  Bonnie L Bassler,et al.  Quorum sensing controls biofilm formation in Vibrio cholerae , 2003, Molecular microbiology.

[120]  E. Ruby,et al.  LuxO controls luxR expression in Vibrio harveyi: evidence for a common regulatory mechanism in Vibrio , 2003, Molecular microbiology.

[121]  V. Ambros,et al.  Role of MicroRNAs in Plant and Animal Development , 2003, Science.

[122]  R. Novick Autoinduction and signal transduction in the regulation of staphylococcal virulence , 2003, Molecular microbiology.

[123]  Bonnie L Bassler,et al.  LuxS quorum sensing: more than just a numbers game. , 2003, Current opinion in microbiology.

[124]  B. Bassler,et al.  Lsr‐mediated transport and processing of AI‐2 in Salmonella typhimurium , 2003, Molecular microbiology.

[125]  G. Caetano-Anollés,et al.  Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[126]  S. Kjelleberg,et al.  Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors , 2003, The EMBO journal.

[127]  Roger S Smith,et al.  P. aeruginosa quorum-sensing systems and virulence. , 2003, Current opinion in microbiology.

[128]  Jared R. Leadbetter,et al.  Utilization of Acyl-Homoserine Lactone Quorum Signals for Growth by a Soil Pseudomonad and Pseudomonas aeruginosa PAO1 , 2003, Applied and Environmental Microbiology.

[129]  E. Ruby,et al.  Vibrio fischeri LuxS and AinS: Comparative Study of Two Signal Synthases , 2004, Journal of bacteriology.

[130]  Lian-Hui Zhang,et al.  Insecticidal Bacillus thuringiensis Silences Erwinia carotovora Virulence by a New Form of Microbial Antagonism, Signal Interference , 2004, Applied and Environmental Microbiology.

[131]  R. Fleischmann,et al.  Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays , 2004, Molecular microbiology.

[132]  M. Travisano,et al.  Strategies of microbial cheater control. , 2004, Trends in microbiology.

[133]  S. Molin,et al.  Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. , 2004, The Journal of antimicrobial chemotherapy.

[134]  M. Breed,et al.  Defensive behavior of honey bees: organization, genetics, and comparisons with other bees. , 2004, Annual review of entomology.

[135]  B. Iglewski,et al.  Transcriptome analysis of quorum-sensing regulation and virulence factor expression in Pseudomonas aeruginosa. , 2004, Vaccine.

[136]  B. Bassler,et al.  Quorum Sensing Regulates Type III Secretion in Vibrio harveyi and Vibrio parahaemolyticus , 2004, Journal of bacteriology.

[137]  Sébastien Guiral,et al.  Interconnection of competence, stress and CiaR regulons in Streptococcus pneumoniae: competence triggers stationary phase autolysis of ciaR mutant cells , 2004, Molecular microbiology.

[138]  D. Morrison,et al.  Identification of ComW as a new component in the regulation of genetic transformation in Streptococcus pneumoniae , 2004, Molecular microbiology.

[139]  N. Wingreen,et al.  The Small RNA Chaperone Hfq and Multiple Small RNAs Control Quorum Sensing in Vibrio harveyi and Vibrio cholerae , 2004, Cell.

[140]  Jürgen Heinze,et al.  Multilevel selection and social evolution of insect societies , 2004, Naturwissenschaften.

[141]  Gholson J. Lyon,et al.  Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria , 2004, Peptides.

[142]  Bonnie L. Bassler,et al.  Three Parallel Quorum-Sensing Systems Regulate Gene Expression in Vibrio harveyi , 2004, Journal of bacteriology.

[143]  H. Schweizer,et al.  Structure of the Pseudomonas aeruginosa acyl‐homoserinelactone synthase LasI , 2004, Molecular microbiology.

[144]  Shawn R Campagna,et al.  Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. , 2004, Molecular cell.

[145]  E. Greenberg,et al.  Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[146]  A. Lusis,et al.  Inactivation of a bacterial virulence pheromone by phagocyte-derived oxidants: new role for the NADPH oxidase in host defense. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[147]  E. Koonin,et al.  Evolution of cell-cell signaling in animals: did late horizontal gene transfer from bacteria have a role? , 2004, Trends in genetics : TIG.

[148]  L. Eberl,et al.  Pseudomonas aeruginosa and Burkholderia cepacia in cystic fibrosis: genome evolution, interactions and adaptation. , 2004, International journal of medical microbiology : IJMM.

[149]  D. Cvitkovitch,et al.  Quorum sensing in streptococcal biofilm formation. , 2005, Trends in microbiology.

[150]  B. Bassler,et al.  Regulation of Uptake and Processing of the Quorum-Sensing Autoinducer AI-2 in Escherichia coli , 2005, Journal of bacteriology.

[151]  Harvey F Lodish,et al.  Docosahexaenoic acid, fatty acid-interacting proteins, and neuronal function: breastmilk and fish are good for you. , 2005, Annual review of cell and developmental biology.

[152]  J. Segall,et al.  The great escape: when cancer cells hijack the genes for chemotaxis and motility. , 2005, Annual review of cell and developmental biology.