Performance comparison of management groups under centralised management

Abstract In many real world data envelopment analysis (DEA) applications, there are situations where a central body manages a large number of similar units through a few distinct management groups. Each group – with a segregated geographical business area – has its own unique management style in managing its operating units while allocating resources and producing products and/or services to local customers. This paper extends the respective DEA approach of Camanho and Dyson (2006) by introducing an index for comparing the performance of the management groups under such a centralised management scenario. Our approach is capable of capturing directly the performance of the groups on the basis of their internal abilities in transforming inputs to outputs. The resulting index and its components not only satisfy circularity but also highlight the technological gap in regard to the potential technology available to each group. Real-world data from one of the global leaders in the elevator and escalator industry will be used to illustrate the proposed approach.

[1]  Ning Zhang,et al.  Energy efficiency, CO2 emission performance and technology gaps in fossil fuel electricity generation in Korea: A meta-frontier non-radial directional distance functionanalysis , 2013 .

[2]  Robert G. Dyson,et al.  Data envelopment analysis and Malmquist indices for measuring group performance , 2006 .

[3]  M. Farrell The Measurement of Productive Efficiency , 1957 .

[4]  F. Førsund,et al.  Banking efficiency in the Nordic countries , 1993 .

[5]  Mohsen Afsharian,et al.  A linear programming approach to efficiency evaluation in nonconvex metatechnologies , 2018, Eur. J. Oper. Res..

[6]  Barnabé Walheer,et al.  Disaggregation of the cost Malmquist productivity index with joint and output-specific inputs , 2018 .

[7]  Yujiro Hayami,et al.  Sources of Agricultural Productivity Gap Among Selected Countries , 1969 .

[8]  R. Shephard Cost and production functions , 1953 .

[9]  R. Färe,et al.  Productivity changes in Swedish pharamacies 1980–1989: A non-parametric Malmquist approach , 1992 .

[10]  C. Lovell,et al.  The Decomposition of Malmquist Productivity Indexes , 2003 .

[11]  Abraham Charnes,et al.  Measuring the efficiency of decision making units , 1978 .

[12]  Emmanuel Thanassoulis,et al.  A cost Malmquist productivity index capturing group performance , 2015, Eur. J. Oper. Res..

[13]  Francisco Perez,et al.  Efficiency analysis in banking firms: An international comparison , 1997 .

[14]  K. Tsekouras,et al.  Are cooperatives the weakest link in European banking? A non-parametric metafrontier approach , 2010 .

[15]  Emmanuel Thanassoulis,et al.  Introduction to the Theory and Application of Data Envelopment Analysis: A Foundation Text with Integrated Software , 2001 .

[16]  S. Malmquist Index numbers and indifference surfaces , 1953 .

[17]  Emmanuel Thanassoulis,et al.  Productivity change in the water industry in England and Wales: application of the meta-Malmquist index , 2011, J. Oper. Res. Soc..

[18]  Shawna Grosskopf,et al.  Some Remarks on Productivity and its Decompositions , 2003 .

[19]  Barnabé Walheer,et al.  Aggregation of metafrontier technology gap ratios: the case of European sectors in 1995-2015 , 2018, Eur. J. Oper. Res..

[20]  J. Pastor,et al.  A global Malmquist productivity index , 2005 .

[21]  C. Lovell,et al.  A note on the Malmquist productivity index , 1995 .

[22]  C.-H. Lin,et al.  Measuring non-convex metafrontier efficiency in international tourist hotels , 2013, J. Oper. Res. Soc..

[23]  Finn R. Førsund,et al.  Malmquist Indices of Productivity Growth during the Deregulation of Norwegian Banking, 1980-89 , 1992 .

[24]  Mohsen Afsharian,et al.  A non-convex meta-frontier Malmquist index for measuring productivity over time , 2018 .

[25]  Finn R. Førsund,et al.  Productivity development of Norwegian electricity distribution utilities , 1998 .

[26]  Mohsen Afsharian,et al.  Metafrontier efficiency analysis with convex and non-convex metatechnologies by stochastic nonparametric envelopment of data , 2017 .

[27]  S. Ray,et al.  PRODUCTIVITY GROWTH, TECHNICAL PROGRESS AND EFFICIENCY CHANGE IN INDUSTRIALIZED COUNTRIES: COMMENT , 1997 .

[28]  Tammo Francksen,et al.  Assessing the performance of German Bundesliga football players: a non-parametric metafrontier approach , 2011, Central Eur. J. Oper. Res..

[29]  G. Battese,et al.  Metafrontier frameworks for the study of firm-level efficiencies and technology ratios , 2008 .

[30]  B. Balk Scale Efficiency and Productivity Change , 2001 .

[31]  Xiao Wei,et al.  Dynamic total factor carbon emissions performance changes in the Chinese transportation industry , 2015 .

[32]  G. Battese,et al.  A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies , 2004 .

[33]  Vernon W. Ruttan,et al.  Agricultural productivity differences among countries. , 1970 .

[34]  Diego Prior,et al.  On centralized resource utilization and its reallocation by using DEA , 2014, Ann. Oper. Res..

[35]  Jeong-Dong Lee,et al.  A metafrontier approach for measuring Malmquist productivity index , 2010 .

[36]  Jesus M. de la Garza,et al.  Measuring the efficiency of highway maintenance contracting strategies: A bootstrapped non-parametric meta-frontier approach , 2012, Eur. J. Oper. Res..

[37]  Per Joakim Agrell,et al.  Incentive plans for Productive Efficiency, Innovation and Learning , 2002 .

[38]  J. Pastor,et al.  Centralized resource allocation BCC models , 2009 .

[39]  Wade D. Cook,et al.  Hierarchies and Groups in DEA , 1998 .

[40]  Barnabé Walheer,et al.  Cost Malmquist productivity index: an output-specific approach for group comparison , 2018 .

[41]  L. R. Christensen,et al.  THE ECONOMIC THEORY OF INDEX NUMBERS AND THE MEASUREMENT OF INPUT, OUTPUT, AND PRODUCTIVITY , 1982 .

[42]  George E. Battese,et al.  Technology Gap, Efficiency, and a Stochastic Metafrontier Function , 2002 .

[43]  Svante Ylvinger,et al.  Industry performance and structural efficiency measures: Solutions to problems in firm models , 2000, Eur. J. Oper. Res..

[44]  Emmanuel Thanassoulis,et al.  A frontier-based system of incentives for units in organisations with varying degrees of decentralisation , 2019, Eur. J. Oper. Res..

[45]  Juan Aparicio,et al.  Comparing school ownership performance using a pseudo-panel database: A Malmquist-type index approach , 2017, Eur. J. Oper. Res..

[46]  Juan Aparicio,et al.  A note on measuring group performance over time with pseudo-panels , 2018, Eur. J. Oper. Res..

[47]  William W. Cooper,et al.  Evaluating Program and Managerial Efficiency: An Application of Data Envelopment Analysis to Program Follow Through , 1981 .

[48]  Joe Zhu,et al.  Within-group common weights in DEA: An analysis of power plant efficiency , 2007, Eur. J. Oper. Res..

[49]  S. Lozano,et al.  Centralized Resource Allocation Using Data Envelopment Analysis , 2004 .

[50]  Joe Zhu,et al.  Within-group common benchmarking using DEA , 2017, Eur. J. Oper. Res..

[51]  C. O'Donnell An aggregate quantity framework for measuring and decomposing productivity change , 2012 .

[52]  József Fogarasi,et al.  Efficiency, productivity and technology comparison for farms in Central and Western Europe: The case of field crop and dairy farming in Hungary and France , 2012 .

[53]  Mohsen Afsharian,et al.  The overall Malmquist index: a new approach for measuring productivity changes over time , 2015, Ann. Oper. Res..

[54]  Rolf Färe,et al.  Measuring the technical efficiency of production , 1978 .

[55]  R. Sala-Garrido,et al.  Efficiency analysis of small franchise enterprises through a DEA metafrontier model , 2012 .