The phenomenon of autonomous endosperm in sexual and apomictic plants

Abstract Endosperm is a key nutritive tissue that supports the developing embryo or seedling, and serves as a major nutritional source for human and livestock feed. In sexually-reproducing flowering plants, it generally develops after fertilization. However, autonomous endosperm (AE) formation (i.e. independent of fertilization) is also possible. Recent findings of AE loci/ genes and aberrant imprinting in native apomicts, together with a successful initiation of parthenogenesis in rice and lettuce, have enhanced our understanding of the mechanisms bridging sexual and apomictic seed formation. However, the mechanisms driving AE development are not well understood. This review presents novel aspects related to AE development in sexual and asexual plants underlying stress conditions as the primary trigger for AE. Both application of hormones to unfertilized ovules and mutations that impair epigenetic regulation lead to AE development in sexual Arabidopsis thaliana, which may point to a common pathway for both phenomena. Apomictic-like AE development under experimental conditions can take place due to auxin-dependent gene expression and/or DNA methylation.

[1]  F. Berger,et al.  Cellular dynamics of coenocytic endosperm development in Arabidopsis thaliana , 2023, Nature Plants.

[2]  C. Köhler,et al.  Endosperm cellularization failure induces a dehydration-stress response leading to embryo arrest , 2022, The Plant cell.

[3]  T. Sharbel,et al.  Seed size, endosperm and germination variation in sexual and apomictic Boechera , 2022, Frontiers in Plant Science.

[4]  J. Frouin,et al.  High-frequency synthetic apomixis in hybrid rice , 2022, bioRxiv.

[5]  A. Schmidt,et al.  Differential expression analysis of sexual and apomictic Boechera uncovers FAS4 as crucial for gametogenesis , 2022, bioRxiv.

[6]  R. Xue,et al.  The Role of Plant Progesterone in Regulating Growth, Development, and Biotic/Abiotic Stress Responses , 2022, International journal of molecular sciences.

[7]  G. Angenent,et al.  BABY BOOM regulates early embryo and endosperm development , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. E. Rodríguez-Pérez,et al.  Haploid Induction in Tomato (Solanum lycopersicum L.) via Gynogenesis , 2022, Plants.

[9]  J. Miller,et al.  Spatial and temporal regulation of parent-of-origin allelic expression in the endosperm , 2022, bioRxiv.

[10]  E. Datema,et al.  A PARTHENOGENESIS allele from apomictic dandelion can induce egg cell division without fertilization in lettuce , 2022, Nature Genetics.

[11]  G. Angenent,et al.  Auxin biosynthesis maintains embryo identity and growth during BABY BOOM-induced somatic embryogenesis , 2021, Plant physiology.

[12]  Matthew R. Tucker,et al.  The Rab Geranylgeranyl Transferase Beta Subunit Is Essential for Embryo and Seed Development in Arabidopsis thaliana , 2021, International journal of molecular sciences.

[13]  C. Köhler,et al.  Endosperm Evolution by Duplicated and Neofunctionalized Type I MADS-Box Transcription Factors , 2021, bioRxiv.

[14]  Tian Zhang Autonomous endosperm development in embryo-free seeds. , 2021, The Plant cell.

[15]  V. Brukhin,et al.  Phylogenetic and Expression Analysis of CENH3 and APOLLO Genes in Sexual and Apomictic Boechera Species , 2021, Plants.

[16]  Martin Mau,et al.  The spread of infectious asexuality through haploid pollen. , 2021, The New phytologist.

[17]  Sue Pemberton EXTENDED , 2020, The Cyber Security Handbook.

[18]  J. Carman,et al.  Whether Gametophytes Are Reduced or Unreduced in Angiosperms Might Be Determined Metabolically , 2020, Genes.

[19]  M. Ohme-Takagi,et al.  Mutation of the imprinted gene OsEMF2a induces autonomous endosperm development and delayed cellularization in rice , 2020, The Plant cell.

[20]  Wei-Cai Yang,et al.  Central Cell in Flowering Plants: Specification, Signaling, and Evolution , 2020, Frontiers in Plant Science.

[21]  Matthew R. Tucker,et al.  Rab-dependent vesicular traffic affects female gametophyte development in Arabidopsis , 2020, Journal of experimental botany.

[22]  B. Laenen,et al.  Hybrid seed incompatibility in Capsella is connected to chromatin condensation defects in the endosperm , 2020, bioRxiv.

[23]  Meng-Xiang Sun,et al.  Endosperm development is an autonomously programmed process independent of embryogenesis , 2020, bioRxiv.

[24]  P. V. van Dijk,et al.  Genetic Dissection of Apomixis in Dandelions Identifies a Dominant Parthenogenesis Locus and Highlights the Complexity of Autonomous Endosperm Formation , 2020, Genes.

[25]  S. Mosyakin,et al.  Endosperm of Angiosperms and Genomic Imprinting , 2020, Life.

[26]  A. Schmidt Controlling Apomixis: Shared Features and Distinct Characteristics of Gene Regulation , 2020, Genes.

[27]  G. Ingram Faculty Opinions recommendation of FERTILIZATION-INDEPENDENT SEED-Polycomb Repressive Complex 2 Plays a Dual Role in Regulating Type I MADS-Box Genes in Early Endosperm Development. , 2020 .

[28]  C. Köhler,et al.  Genomic imprinting in plants—revisiting existing models , 2020, Genes & development.

[29]  Clément Lafon Placette Endosperm genome dosage, hybrid seed failure, and parental imprinting: sexual selection as an alternative to parental conflict. , 2019, American journal of botany.

[30]  E. Grotewold,et al.  Arabidopsis EMSY-like (EML) histone readers are necessary for post-fertilization seed development, but prevent fertilization-independent seed formation. , 2019, Plant science : an international journal of experimental plant biology.

[31]  G. Barcaccia,et al.  Did apomixis evolve from sex or was it the other way around? , 2019, Journal of experimental botany.

[32]  M. Srivastava,et al.  Apospory and Diplospory in Diploid Boechera (Brassicaceae) May Facilitate Speciation by Recombination-Driven Apomixis-to-Sex Reversals , 2019, Front. Plant Sci..

[33]  M. Nowack,et al.  Plant proteases during developmental programmed cell death. , 2019, Journal of experimental botany.

[34]  Xitong Fei,et al.  The steps from sexual reproduction to apomixis , 2019, Planta.

[35]  D. Hojsgaard,et al.  The Rise of Apomixis in Natural Plant Populations , 2019, Front. Plant Sci..

[36]  S. Pessino,et al.  A Portion of the Apomixis Locus of Paspalum Simplex is Microsyntenic with an Unstable Chromosome Segment Highly Conserved Among Poaceae , 2019, Scientific Reports.

[37]  V. K. Yadav,et al.  Epigenetic signatures associated with imprinted paternally expressed genes in the Arabidopsis endosperm , 2019, Genome Biology.

[38]  V. Sundaresan,et al.  A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds , 2018, Nature.

[39]  Hong Ma,et al.  Aberrant imprinting may underlie evolution of parthenogenesis , 2018, Scientific Reports.

[40]  T. Sharbel,et al.  Establishing the cell biology of apomictic reproduction in diploid Boechera stricta (Brassicaceae) , 2018, Annals of botany.

[41]  C. Köhler,et al.  Auxin: a molecular trigger of seed development , 2018, Genes & development.

[42]  R. Offringa,et al.  Auxin Homeostasis in Arabidopsis Ovules Is Anther-Dependent at Maturation and Changes Dynamically upon Fertilization , 2017, Front. Plant Sci..

[43]  T. Sharbel,et al.  Mutation Accumulation in an Asexual Relative of Arabidopsis , 2017, PLoS genetics.

[44]  L. Hennig,et al.  Auxin production in the endosperm drives seed coat development in Arabidopsis , 2016, eLife.

[45]  N. Smorodinsky,et al.  FIE, a nuclear PRC2 protein, forms cytoplasmic complexes in Arabidopsis thaliana , 2016, Journal of experimental botany.

[46]  L. Lopez-Molina,et al.  Primary seed dormancy: a temporally multilayered riddle waiting to be unlocked , 2016, Journal of experimental botany.

[47]  A. Koltunow,et al.  Mechanisms of endosperm initiation , 2016, Plant Reproduction.

[48]  C. Köhler,et al.  Endosperm‐based postzygotic hybridization barriers: developmental mechanisms and evolutionary drivers , 2016, Molecular ecology.

[49]  S. Pessino,et al.  An apomixis-linked ORC3-like pseudogene is associated with silencing of its functional homolog in apomictic Paspalum simplex. , 2016, Journal of experimental botany.

[50]  D. Zilberman,et al.  Evolution and function of genomic imprinting in plants , 2015, Genes & development.

[51]  C. Köhler,et al.  Auxin production couples endosperm development to fertilization , 2015, Nature Plants.

[52]  N. Gozukirmizi,et al.  STRUCTURE AND EXPRESSION ANALYSES OF THE FERTILIZATION INDEPENDENT SEED (FIS) GENE ORTHOLOGS OF THE APOMICT Boechera species , 2015 .

[53]  J. Bohdanowicz,et al.  Exogenous steroid hormones stimulate full development of autonomous endosperm in Arabidopsis thaliana. , 2015 .

[54]  L. Hennig,et al.  Keeping the gate closed: functions of the polycomb repressive complex PRC2 in development. , 2015, The Plant journal : for cell and molecular biology.

[55]  C. Köhler,et al.  Evolution and function of epigenetic processes in the endosperm , 2015, Front. Plant Sci..

[56]  S. Pessino,et al.  A methylation status analysis of the apomixis-specific region in Paspalum spp. suggests an epigenetic control of parthenogenesis. , 2014, Journal of experimental botany.

[57]  G. Bell,et al.  Natural epigenetic polymorphisms lead to intraspecific variation in Arabidopsis gene imprinting , 2014, eLife.

[58]  Ulrich C. Klostermeier,et al.  Apomictic and Sexual Germline Development Differ with Respect to Cell Cycle, Transcriptional, Hormonal and Epigenetic Regulation , 2014, PLoS genetics.

[59]  L. Hennig,et al.  Variations on a theme: Polycomb group proteins in plants. , 2014, Journal of experimental botany.

[60]  J. Wagner,et al.  Dihaploidy yields diploid apomicts and parthenogens in Erigeron (Asteraceae). , 2014, American journal of botany.

[61]  Chun-Hsin Liu,et al.  Drugs for Plant Chromosome and Chromatin Research , 2014, Cytogenetic and Genome Research.

[62]  C. Köhler,et al.  Embryo and endosperm, partners in seed development. , 2014, Current opinion in plant biology.

[63]  J. Bohdanowicz,et al.  THE INFLUENCE OF fie AND met1 MUTATIONS AND IN VITRO CULTURE CONDITIONS ON AUTONOMOUS ENDOSPERM DEVELOPMENT IN UNFERTILIZED OVULES OF ARABIDOPSIS THALIANA , 2013 .

[64]  T. Sharbel,et al.  A Conserved Apomixis-Specific Polymorphism Is Correlated with Exclusive Exonuclease Expression in Premeiotic Ovules of Apomictic Boechera Species1[W][OPEN] , 2013, Plant Physiology.

[65]  Martin Mau,et al.  The Conserved Chimeric Transcript UPGRADE2 Is Associated with Unreduced Pollen Formation and Is Exclusively Found in Apomictic Boechera Species1[C][W][OPEN] , 2013, Plant Physiology.

[66]  E. Hörandl,et al.  The oxidative damage initiation hypothesis for meiosis , 2013, Plant Reproduction.

[67]  A. Koltunow,et al.  Genetic separation of autonomous endosperm formation (AutE) from the two other components of apomixis in Hieracium , 2013, Plant Reproduction.

[68]  J. Arand,et al.  The Polycomb group protein MEDEA and the DNA methyltransferase MET1 interact to repress autonomous endosperm development in Arabidopsis. , 2013, The Plant journal : for cell and molecular biology.

[69]  F. Berger,et al.  Endosperm: food for humankind and fodder for scientific discoveries. , 2012, The New phytologist.

[70]  C. Spillane,et al.  Epigenetic mechanisms underlying genomic imprinting in plants. , 2012, Annual review of plant biology.

[71]  T. Sharbel,et al.  Differential effects of polyploidy and diploidy on fitness of apomictic Boechera , 2012, Sexual Plant Reproduction.

[72]  C. Köhler,et al.  Polycomb group proteins are required to couple seed coat initiation to fertilization , 2011, Proceedings of the National Academy of Sciences.

[73]  C. Schwechheimer Gibberellin Signaling in Plants – The Extended Version , 2011, Front. Plant Sci..

[74]  S. Henikoff,et al.  Genomic Analysis of Parent-of-Origin Allelic Expression in Arabidopsis thaliana Seeds , 2011, PloS one.

[75]  M. Rehmsmeier,et al.  High-Resolution Analysis of Parent-of-Origin Allelic Expression in the Arabidopsis Endosperm , 2011, PLoS genetics.

[76]  S. Sprunck,et al.  Nuclear behavior, cell polarity, and cell specification in the female gametophyte , 2011, Sexual Plant Reproduction.

[77]  Robert L. Fischer,et al.  Regulation of imprinted gene expression in Arabidopsis endosperm , 2011, Proceedings of the National Academy of Sciences.

[78]  J. Carman,et al.  Apospory appears to accelerate onset of meiosis and sexual embryo sac formation in sorghum ovules , 2011, BMC Plant Biology.

[79]  T. Sharbel,et al.  Quantitative variation for apomictic reproduction in the genus Boechera (Brassicaceae). , 2010, American journal of botany.

[80]  L. Hennig,et al.  H3K27me3 Profiling of the Endosperm Implies Exclusion of Polycomb Group Protein Targeting by DNA Methylation , 2010, PLoS genetics.

[81]  K. Dahlgren DIE BEFRUCHTUNGSERSCHEINUNGEN DER ANGIOSPERMEN EINE MONOGRAPHISCHE ÜBERSICHT , 2010 .

[82]  C. Köhler,et al.  The impact of the triploid block on the origin and evolution of polyploid plants. , 2010, Trends in genetics : TIG.

[83]  E. Hörandl,et al.  Understanding the geographic distributions of apomictic plants: a case for a pluralistic approach , 2008, Plant ecology & diversity.

[84]  Matthew R. Tucker,et al.  Sexual and Apomictic Seed Formation in Hieracium Requires the Plant Polycomb-Group Gene FERTILIZATION INDEPENDENT ENDOSPERM[W] , 2008, The Plant Cell Online.

[85]  A. Schnittger,et al.  Natural Variation in the Degree of Autonomous Endosperm Formation Reveals Independence and Constraints of Embryo Growth During Seed Development in Arabidopsis thaliana , 2008, Genetics.

[86]  F. Berger,et al.  DNA Methylation Causes Predominant Maternal Controls of Plant Embryo Growth , 2008, PloS one.

[87]  U. Grossniklaus,et al.  Molecular control of autonomous embryo and endosperm development , 2008, Sexual Plant Reproduction.

[88]  L. Hennig,et al.  Polycomb group proteins function in the female gametophyte to determine seed development in plants , 2007, Development.

[89]  A. Schnittger,et al.  Bypassing genomic imprinting allows seed development , 2007, Nature.

[90]  R. Noyes,et al.  Mendelian segregation for two-factor apomixis in Erigeron annuus (Asteraceae) , 2007, Heredity.

[91]  M. Evans,et al.  Maternal Gametophytic baseless1 Is Required for Development of the Central Cell and Early Endosperm Patterning in Maize (Zea mays) , 2006, Genetics.

[92]  F. Berger,et al.  Maintenance of DNA Methylation during the Arabidopsis Life Cycle Is Essential for Parental Imprinting[W] , 2006, The Plant Cell Online.

[93]  B. Bohanec,et al.  The development of onion (Allium cepa L.) Embryo sacs in vitro and gynogenesis induction in relation to flower size , 2005, In Vitro Cellular & Developmental Biology - Plant.

[94]  J. Bohdanowicz,et al.  In vitro culture promotes partial autonomous endosperm development in unfertilized ovules of wild-type Arabidopsis thaliana var. Columbia , 2005, Sexual Plant Reproduction.

[95]  F. Berger,et al.  Loss of Function of MULTICOPY SUPPRESSOR OF IRA 1 Produces Nonviable Parthenogenetic Embryos in Arabidopsis , 2005, Current Biology.

[96]  F. Berger,et al.  Polycomb group genes control developmental timing of endosperm. , 2005, The Plant journal : for cell and molecular biology.

[97]  H. Dickinson,et al.  More than a yolk: the short life and complex times of the plant endosperm. , 2004, Trends in plant science.

[98]  W. Gruissem,et al.  Plant retinoblastoma homologues control nuclear proliferation in the female gametophyte , 2004, Nature.

[99]  F. Berger,et al.  Identification of new members of Fertilisation Independent Seed Polycomb Group pathway involved in the control of seed development in Arabidopsis thaliana , 2004, Development.

[100]  R. Bicknell,et al.  Understanding Apomixis: Recent Advances and Remaining Conundrums , 2004, The Plant Cell Online.

[101]  O. Olsen Nuclear Endosperm Development in Cereals and Arabidopsis thaliana , 2004, The Plant Cell Online.

[102]  Ueli Grossniklaus,et al.  Apomixis: a developmental perspective. , 2003, Annual review of plant biology.

[103]  L. Hennig,et al.  Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development , 2003, The EMBO journal.

[104]  N. Ohad,et al.  From flour to flower: how Polycomb group proteins influence multiple aspects of plant development. , 2003, Trends in plant science.

[105]  V. Sundaresan Faculty Opinions recommendation of Sexual and apomictic reproduction in Hieracium subgenus pilosella are closely interrelated developmental pathways. , 2003 .

[106]  L. Hennig,et al.  The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. , 2003, Genes & development.

[107]  O. Danilevskaya,et al.  Duplicated fie genes in maize: expression pattern and imprinting suggest distinct functions. , 2003, The Plant cell.

[108]  Hong Ma,et al.  Gametophyte development , 2002, Current Biology.

[109]  U. Grossniklaus,et al.  Evolutionary origins of the endosperm in flowering plants , 2002, Genome Biology.

[110]  W. Friedman,et al.  Identification of diploid endosperm in an early angiosperm lineage , 2002, Nature.

[111]  T. Naumova,et al.  Reproductive development in apomictic populations of Arabis holboellii (Brassicaceae) , 2001, Sexual Plant Reproduction.

[112]  R. Scott,et al.  Autonomous endosperm development in flowering plants: how to overcome the imprinting problem? , 2001, Sexual Plant Reproduction.

[113]  B. Bohanec,et al.  Embryological study on gynogenesis in onion (Allium cepa L.) , 2001, Sexual Plant Reproduction.

[114]  W. Friedman Developmental and evolutionary hypotheses for the origin of double fertilization and endosperm. , 2001, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[115]  Matthew R. Tucker,et al.  Dynamics of callose deposition and β-1,3-glucanase expression during reproductive events in sexual and apomictic Hieracium , 2001, Planta.

[116]  F. Berger,et al.  Polycomb group genes control pattern formation in plant seed , 2001, Current Biology.

[117]  M. Campos,et al.  Gamma-irradiated pollen induces the formation of 2n endosperm and abnormal embryo development in European plum (Prunus domestica L., cv. “Rainha Cláudia Verde”) , 2000 .

[118]  H. Dickinson,et al.  Hypomethylation Promotes Autonomous Endosperm Development and Rescues Postfertilization Lethality in fie Mutants , 2000, Plant Cell.

[119]  E. Álvarez-Buylla,et al.  An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[120]  L. Przywara,et al.  Autonomous endosperm induction by in vitro culture of unfertilized ovules of Viola odorata L. , 1999, Sexual Plant Reproduction.

[121]  K. Musiał,et al.  Endosperm response to pollen irradiation in kiwifruit , 1999, Sexual Plant Reproduction.

[122]  R. Mól Embryological aspects of in vitro gynogenesis in plant organ cultures , 1999 .

[123]  O. Olsen,et al.  Development of endosperm in Arabidopsis thaliana , 1999, Sexual Plant Reproduction.

[124]  R. Yadegari,et al.  Mutations in FIE, a WD Polycomb Group Gene, Allow Endosperm Development without Fertilization , 1999, Plant Cell.

[125]  W. Peacock,et al.  Genes controlling fertilization-independent seed development in Arabidopsis thaliana. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[126]  K. Musiał,et al.  Influence of irradiated pollen on embryo and endosperm development in kiwifruit , 1998 .

[127]  R. Bicknell,et al.  Sexual and apomictic development in Hieracium , 1998, Sexual Plant Reproduction.

[128]  H. Dickinson,et al.  Parent-of-origin effects on seed development in Arabidopsis thaliana. , 1998, Development.

[129]  Marilu A. Hoeppner,et al.  Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. , 1998, Science.

[130]  W. Peacock,et al.  Fertilization-independent seed development in Arabidopsis thaliana. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[131]  P. Repetti,et al.  A mutation that allows endosperm development without fertilization. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[132]  R. Mól,et al.  Induction of autonomous endosperm in Lupinus luteus, Helleborus niger and Melandrium album by in vitro culture of unpollinated ovaries , 1995, Sexual Plant Reproduction.

[133]  B. Roy The breeding systems of six species of Arabis (Brassicaceae) , 1995 .

[134]  A. Sauton,et al.  Effect of parthenocarpy on ovule development in cucumber (Cucumis sativus L.) after pollination with normal and irradiated pollen , 1994, Sexual Plant Reproduction.

[135]  M. Talón,et al.  Embryo sac development and endogenous gibberellins in pollinated and unpollinated ovaries of walnut (Juglans regia) , 1994 .

[136]  M. Mogie The evolution of asexual reproduction in plants , 1994 .

[137]  Y. Lespinasse,et al.  Pollination with gamma-irradiated pollen and development of fruits, seeds and parthenogenetic plants in apple , 1991, Euphytica.

[138]  D. J. James,et al.  Endosperm responses to irradiated pollen in apples , 1987, Theoretical and Applied Genetics.

[139]  K. K. Pandey,et al.  ‘Hertwig Effect’ in plants: induced parthenogenesis through the use of irradiated pollen , 1982, Theoretical and Applied Genetics.

[140]  A. Eenink Matromorphy in Brassica oleracea L. VI. Research on ovules, embryos and endosperms after prickle pollination , 1975, Euphytica.

[141]  A. Eenink Matromorphy in Brassica oleracea L. I. Terminology, parthenogenesis in Cruciferae and the formation and usability of matromorphic plants , 1974, Euphytica.

[142]  A. Eenink Matromorphy in Brassica oleracea L. III. The influence of temperature, delayed prickle pollination and growth regulators on the number of matromorphic seeds formed , 1974, Euphytica.

[143]  R. A. Brink,et al.  The Endosperm-Embryo Relationship in an Autonomous Apomict, Taraxacum officinale , 1949, Botanical Gazette.

[144]  A. Blakeslee,et al.  A HAPLOID MUTANT IN THE JIMSON WEED, "DATURA STRAMONIUM". , 1922 .

[145]  Fritz Ask Über die Entwicklung , 1908, Anatomische Hefte.

[146]  U. Grossniklaus,et al.  Seeds-An evolutionary innovation underlying reproductive success in flowering plants. , 2019, Current topics in developmental biology.

[147]  J. Vielle-Calzada,et al.  Apomixis in flowering plants: Developmental and evolutionary considerations. , 2019, Current topics in developmental biology.

[148]  Jialing Yao,et al.  OsFIE2 plays an essential role in the regulation of rice vegetative and reproductive development. , 2014, The New phytologist.

[149]  R. Noyes Apomixis in the Asteraceae: Diamonds in the Rough , 2009 .

[150]  J. Bohdanowicz,et al.  Autonomous endosperm induction in cultured unpollinated ovaries is strongly species dependent , 2009 .

[151]  J. Bohdanowicz,et al.  Induction of autonomous endosperm development in ovules of unpollinated pistils of arabidopsis thaliana var. landsberg cultured in vitro , 2007 .

[152]  A. Schnittger,et al.  A positive signal from the fertilization of the egg cell sets off endosperm proliferation in angiosperm embryogenesis , 2006, Nature Genetics.

[153]  S. Assmann,et al.  Arabidopsis thaliana , 2005 .

[154]  T. D. Thomas EMBRYOLOGICAL OBSERVATIONS ON UNPOLLINATED OVARY CULTURE OF MULBERRY (MORUS ALBA L.) , 2004 .

[155]  M. Falque Pod and seed development and phenotype of the M1 plants after pollination and fertilization with irradiated pollen in cacao (Theobroma cacao L.) , 2004, Euphytica.

[156]  W. Jensen,et al.  An ultrastructural study of early endosperm development and synergid changes in unfertilized cotton ovules , 2004, Planta.

[157]  E. Kuta,et al.  Autonomous endosperm development in unpollinated ovaries of Brassica napus L. cv. Topas cultured in vitro , 2002 .

[158]  M. Camposa,et al.  Gamma-irradiated pollen induces the formation of 2 n endosperm and abnormal embryo development in European plum ( Prunus domestica L . , cv . `̀ Rainha ClaÂudia Verde ' ' ) , 2000 .

[159]  E. Kuta,et al.  Embryological analysis of unpollinated ovaries of Viola L. cultured in vitro , 2000 .

[160]  E. Kuta,et al.  Embryological analysis of unfertilized ovules of tomato [Lycopersicon esculentum Mill.] cultured in vitro , 2000 .

[161]  K. Niemirowicz-Szczytt,et al.  Cucumber [Cucumis sativus L.] embryo development in situ after pollination with irradiated pollen , 1999 .

[162]  K. Musiał,et al.  Pollination with heavily irradiated pollen in Nicotiana: induced parthenogenesis and embryological study , 1999 .

[163]  M. Bartolomei,et al.  Genomic imprinting in mammals. , 1997, Annual review of genetics.

[164]  L. Róg,et al.  An attempt to induce gynogenesis in Brassica napus L. , 1997 .

[165]  R. Mól In vitro gynogenesis in Melandrium album: from parthenogenetic embryos to mixoploid plants , 1992 .

[166]  C. Zhou,et al.  In vitro culture of unfertilized ovules in Helianthus annuus L. , 1986 .

[167]  Z. Chang,et al.  Induction of haploid rice plantlets by ovary culture , 1981 .