Computational thermo-fluid analysis of a disk brake

We present computational thermo-fluid analysis of a disk brake, including thermo-fluid analysis of the flow around the brake and heat conduction analysis of the disk. The computational challenges include proper representation of the small-scale thermo-fluid behavior, high-resolution representation of the thermo-fluid boundary layers near the spinning solid surfaces, and bringing the heat transfer coefficient (HTC) calculated in the thermo-fluid analysis of the flow to the heat conduction analysis of the spinning disk. The disk brake model used in the analysis closely represents the actual configuration, and this adds to the computational challenges. The components of the method we have developed for computational analysis of the class of problems with these types of challenges include the Space–Time Variational Multiscale method for coupled incompressible flow and thermal transport, ST Slip Interface method for high-resolution representation of the thermo-fluid boundary layers near spinning solid surfaces, and a set of projection methods for different parts of the disk to bring the HTC calculated in the thermo-fluid analysis. With the HTC coming from the thermo-fluid analysis of the flow around the brake, we do the heat conduction analysis of the disk, from the start of the breaking until the disk spinning stops, demonstrating how the method developed works in computational analysis of this complex and challenging problem.

[1]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[2]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[3]  Tayfun E. Tezduyar,et al.  Finite element stabilization parameters computed from element matrices and vectors , 2000 .

[4]  Tayfun E. Tezduyar,et al.  Space–time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle , 2012 .

[5]  Tayfun E. Tezduyar,et al.  Computation of Inviscid Supersonic Flows Around Cylinders and Spheres With the V-SGS Stabilization and YZβ Shock-Capturing , 2009 .

[6]  Tayfun E. Tezduyar,et al.  Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods , 2008 .

[7]  Pablo A. Kler,et al.  SUPG and discontinuity-capturing methods for coupled fluid mechanics and electrochemical transport problems , 2013 .

[8]  Alessandro Corsini,et al.  A variational multiscale method for particle-cloud tracking in turbomachinery flows , 2014 .

[9]  Tayfun E. Tezduyar,et al.  Space–time fluid mechanics computation of heart valve models , 2014 .

[10]  Tayfun E. Tezduyar,et al.  Stabilization and shock-capturing parameters in SUPG formulation of compressible flows , 2004 .

[11]  Kenji Takizawa,et al.  Computer modeling techniques for flapping-wing aerodynamics of a locust , 2013 .

[12]  Alessandro Corsini,et al.  Computational analysis of noise reduction devices in axial fans with stabilized finite element formulations , 2012 .

[13]  A. Korobenko,et al.  Novel structural modeling and mesh moving techniques for advanced fluid–structure interaction simulation of wind turbines , 2015 .

[14]  Victor M. Calo,et al.  YZβ discontinuity capturing for advection‐dominated processes with application to arterial drug delivery , 2007 .

[15]  Victor M. Calo,et al.  Improving stability of stabilized and multiscale formulations in flow simulations at small time steps , 2010 .

[16]  T. Tezduyar,et al.  Particle tracking and particle–shock interaction in compressible-flow computations with the V-SGS stabilization and $$YZ\beta $$YZβ shock-capturing , 2015 .

[17]  T. Tezduyar,et al.  Stabilized space–time computation of wind-turbine rotor aerodynamics , 2011 .

[18]  Hitoshi Hattori,et al.  Space–time VMS method for flow computations with slip interfaces (ST-SI) , 2015 .

[19]  T. Tezduyar,et al.  Computation of inviscid compressible flows with the V‐SGS stabilization and YZβ shock‐capturing , 2007 .

[20]  Alessandro Corsini,et al.  Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD) , 2007 .

[21]  Kenji Takizawa,et al.  Computational engineering analysis with the new-generation space–time methods , 2014 .

[22]  Yuri Bazilevs,et al.  Computational fluid–structure interaction: methods and application to a total cavopulmonary connection , 2009 .

[23]  Yuri Bazilevs,et al.  ALE-VMS AND ST-VMS METHODS FOR COMPUTER MODELING OF WIND-TURBINE ROTOR AERODYNAMICS AND FLUID–STRUCTURE INTERACTION , 2012 .

[24]  Kenji Takizawa,et al.  Space–time computational analysis of MAV flapping-wing aerodynamics with wing clapping , 2015 .

[25]  Yuri Bazilevs,et al.  Experimental and numerical FSI study of compliant hydrofoils , 2015 .

[26]  Tayfun E. Tezduyar,et al.  Computation of Inviscid Supersonic Flows Around Cylinders and Spheres with the SUPG Formulation and YZβ Shock-Capturing , 2006 .

[27]  Tayfun E. Tezduyar,et al.  Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms , 2013 .

[28]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[29]  Thomas J. R. Hughes,et al.  NURBS-based isogeometric analysis for the computation of flows about rotating components , 2008 .

[30]  Xiaowei Deng,et al.  Fluid–Structure Interaction Modeling of Vertical-Axis Wind Turbines , 2014 .

[31]  I. Akkerman,et al.  Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method , 2010, J. Comput. Phys..

[32]  Thomas J. R. Hughes,et al.  Large eddy simulation of turbulent channel flows by the variational multiscale method , 2001 .

[33]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[34]  Yuri Bazilevs,et al.  Space–Time and ALE-VMS Techniques for Patient-Specific Cardiovascular Fluid–Structure Interaction Modeling , 2012 .

[35]  Tayfun E. Tezduyar,et al.  Finite elements in fluids: Stabilized formulations and moving boundaries and interfaces , 2007 .

[36]  Alessandro Corsini,et al.  A Multiscale Finite Element Formulation With Discontinuity Capturing for Turbulence Models With Dominant Reactionlike Terms , 2009 .

[37]  Yuri Bazilevs,et al.  Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk , 2014 .

[38]  Kenji Takizawa,et al.  FSI analysis of the blood flow and geometrical characteristics in the thoracic aorta , 2014 .

[39]  Tayfun E. Tezduyar,et al.  METHODS FOR FSI MODELING OF SPACECRAFT PARACHUTE DYNAMICS AND COVER SEPARATION , 2013 .

[40]  Tayfun E. Tezduyar,et al.  SPACE–TIME VMS METHODS FOR MODELING OF INCOMPRESSIBLE FLOWS AT HIGH REYNOLDS NUMBERS , 2013 .

[41]  Yuri Bazilevs,et al.  Aerodynamic and FSI Analysis of Wind Turbines with the ALE-VMS and ST-VMS Methods , 2014 .

[42]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics , 2011 .

[43]  Tayfun E. Tezduyar,et al.  SUPG finite element computation of compressible flows with the entropy and conservation variables formulations , 1993 .

[44]  Yuri Bazilevs,et al.  Computational Fluid-Structure Interaction: Methods and Applications , 2013 .

[45]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[46]  Yuri Bazilevs,et al.  CHALLENGES AND DIRECTIONS IN COMPUTATIONAL FLUID–STRUCTURE INTERACTION , 2013 .

[47]  Thomas J. R. Hughes,et al.  Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation , 2014, Computational Mechanics.

[48]  Yuri Bazilevs,et al.  Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment , 2014 .

[49]  Yuri Bazilevs,et al.  Fluid–structure interaction modeling of wind turbines: simulating the full machine , 2012, Computational Mechanics.

[50]  Tayfun E. Tezduyar,et al.  SPACE–TIME FLUID–STRUCTURE INTERACTION METHODS , 2012 .

[51]  Tayfun E. Tezduyar,et al.  Multiscale space-time methods for thermo-fluid analysis of a ground vehicle and its tires , 2015 .

[52]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades , 2011 .

[53]  Alessandro Corsini,et al.  Computer Modeling of Wave-Energy Air Turbines With the SUPG/PSPG Formulation and Discontinuity-Capturing Technique , 2012 .

[54]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[55]  Tayfun E. Tezduyar,et al.  Computational Methods for Parachute Fluid–Structure Interactions , 2012 .

[56]  Tayfun E. Tezduyar,et al.  Enhanced-discretization Selective Stabilization Procedure (EDSSP) , 2006 .

[57]  Yuri Bazilevs,et al.  Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics , 2011 .

[58]  Tayfun E. Tezduyar,et al.  Space–time VMS computation of wind-turbine rotor and tower aerodynamics , 2014 .

[59]  Kenji Takizawa,et al.  ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling , 2014 .

[60]  Thomas J. R. Hughes,et al.  Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device , 2009 .

[61]  Kenji Takizawa,et al.  Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent , 2012, Computational Mechanics.

[62]  Tayfun E. Tezduyar,et al.  SUPG finite element computation of inviscid supersonic flows with YZβ shock-Capturing , 2007 .

[63]  Yuri Bazilevs,et al.  New directions and challenging computations in fluid dynamics modeling with stabilized and multiscale methods , 2015 .

[64]  Alessandro Corsini,et al.  A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors , 2010 .

[65]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques , 2007 .

[66]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[67]  Tayfun E. Tezduyar,et al.  Multiscale space–time fluid–structure interaction techniques , 2011 .

[68]  Tayfun E. Tezduyar,et al.  Sequentially-coupled space–time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV , 2014 .

[69]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[70]  A. L. Marsden,et al.  Computation of residence time in the simulation of pulsatile ventricular assist devices , 2014 .

[71]  Tayfun E. Tezduyar,et al.  Petrov-Galerkin formulations with weighting functions dependent upon spatial and temporal discretization: Applications to transient convection-diffusion problems , 1986 .

[72]  A. Korobenko,et al.  ALE–VMS formulation for stratified turbulent incompressible flows with applications , 2015 .

[73]  Alessandro Corsini,et al.  Stabilized finite element computation of NOx emission in aero‐engine combustors , 2011 .

[74]  T. Tezduyar,et al.  Improved Discontinuity-capturing Finite Element Techniques for Reaction Effects in Turbulence Computation , 2006 .

[75]  Yuri Bazilevs,et al.  Wind turbine aerodynamics using ALE–VMS: validation and the role of weakly enforced boundary conditions , 2012, Computational Mechanics.

[76]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[77]  Yuri Bazilevs,et al.  Engineering Analysis and Design with ALE-VMS and Space–Time Methods , 2014 .

[78]  Tayfun E. Tezduyar,et al.  Stabilized formulations for incompressible flows with thermal coupling , 2008 .

[79]  Tayfun E. Tezduyar,et al.  Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust , 2012 .

[80]  A. Korobenko,et al.  STRUCTURAL MECHANICS MODELING AND FSI SIMULATION OF WIND TURBINES , 2013 .

[81]  T. Tezduyar Computation of moving boundaries and interfaces and stabilization parameters , 2003 .

[82]  A. Korobenko,et al.  Aerodynamic Simulation of Vertical-Axis Wind Turbines , 2014 .

[83]  Tayfun E. Tezduyar,et al.  Space-Time Computational Techniques for the Aerodynamics of Flapping Wings , 2012 .

[84]  Kenji Takizawa,et al.  Space–time interface-tracking with topology change (ST-TC) , 2014 .

[85]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .