The influence of increased seawater HCO3− concentration on the survival, growth and physiology of the eelgrass Zostera marina

[1]  B. Schröder,et al.  Using Artificial Seagrass for Promoting Positive Feedback Mechanisms in Seagrass Restoration , 2021, Frontiers in Marine Science.

[2]  C. Kang,et al.  Assessment of restoration success in a transplanted seagrass bed based on isotopic niche metrics , 2021 .

[3]  J. Strong,et al.  Quantification of dissolved CO2 plumes at the Goldeneye CO2-release experiment , 2021, International Journal of Greenhouse Gas Control.

[4]  Yi Zhou,et al.  Diversity, distribution and conservation of seagrass in coastal waters of the Liaodong Peninsula, North Yellow Sea, northern China: Implications for seagrass conservation. , 2021, Marine pollution bulletin.

[5]  Hu Li,et al.  Establishing healthy seedlings of Enhalus acoroides for the tropical seagrass restoration. , 2021, Journal of environmental management.

[6]  G. Diaz-Pulido,et al.  Physiological responses to temperature and ocean acidification in tropical fleshy macroalgae with varying affinities for inorganic carbon , 2020, ICES Journal of Marine Science.

[7]  C. Lovelock,et al.  Decreasing carbonate load of seagrass leaves with increasing latitude , 2019 .

[8]  Wen-Tao Li,et al.  Changes in survival, growth and photosynthetic pigment in response to iron increase in the leaf and root-rhizome tissues of eelgrass Zostera marina , 2019, Aquatic Botany.

[9]  L. Nordlund,et al.  Seagrass meadows support global fisheries production , 2019 .

[10]  C. Bayne,et al.  Blue Carbon: Characteristics of the Ocean’s Sequestration and Storage Ability of Carbon Dioxide , 2018, Blue Carbon in Shallow Coastal Ecosystems.

[11]  I. Hernández,et al.  Interactive effect of temperature, acidification and ammonium enrichment on the seagrass Cymodocea nodosa. , 2018, Marine pollution bulletin.

[12]  F. Niell,et al.  Direct uptake of HCO3- in the marine angiosperm Posidonia oceanica (L.) Delile driven by a plasma membrane H+ economy. , 2017, Plant, cell & environment.

[13]  Joleah B. Lamb,et al.  Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates , 2017, Science.

[14]  Edward B. Barbier,et al.  Seagrass Ecosystem Services and Their Variability across Genera and Geographical Regions , 2016, PloS one.

[15]  C. Collier,et al.  Light Levels Affect Carbon Utilisation in Tropical Seagrass under Ocean Acidification , 2016, PloS one.

[16]  K. Fabricius,et al.  The effects of long-term in situ CO2 enrichment on tropical seagrass communities at volcanic vents , 2016 .

[17]  A. Körtzinger,et al.  Seagrass beds as ocean acidification refuges for mussels? High resolution measurements of p CO 2 and O 2 in a Zostera marina and Mytilus edulis mosaic habitat , 2015 .

[18]  Qiang Xu,et al.  Effect of silt and clay percentage in sediment on the survival and growth of eelgrass Zostera marina: Transplantation experiment in Swan Lake on the eastern coast of Shandong Peninsula, China , 2015 .

[19]  N. Beaumont,et al.  The effect of ocean acidification on carbon storage and sequestration in seagrass beds; a global and UK context. , 2014, Marine pollution bulletin.

[20]  J. Fourqurean,et al.  Effects of in situ CO2 enrichment on the structural and chemical characteristics of the seagrass Thalassia testudinum , 2013 .

[21]  M. Koch,et al.  Climate change and ocean acidification effects on seagrasses and marine macroalgae , 2013, Global change biology.

[22]  James W. Fourqurean,et al.  Seagrass ecosystems as a globally significant carbon stock , 2012 .

[23]  Carlos M. Duarte,et al.  A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2 , 2011 .

[24]  Zhijian Jiang,et al.  Effects of CO(2) enrichment on photosynthesis, growth, and biochemical composition of seagrass Thalassia hemprichii (Ehrenb.) Aschers. , 2010, Journal of integrative plant biology.

[25]  Frederick T. Short,et al.  Accelerating loss of seagrasses across the globe threatens coastal ecosystems , 2009, Proceedings of the National Academy of Sciences.

[26]  L. Hanssen,et al.  Guidelines for seagrass restoration: importance of habitat selection and donor population, spreading of risks, and ecosystem engineering effects. , 2009, Marine pollution bulletin.

[27]  Charles S Cockell,et al.  The evolution of inorganic carbon concentrating mechanisms in photosynthesis , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[28]  Emma Ransome,et al.  Volcanic carbon dioxide vents show ecosystem effects of ocean acidification , 2008, Nature.

[29]  J. Park,et al.  An effective transplanting technique using shells for restoration of Zostera marina habitats. , 2008, Marine pollution bulletin.

[30]  Li Sheng-xiu Effects of bicarbonate on growth and zinc nutrition of different wheat genotypes , 2008 .

[31]  S. Park,et al.  Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: A review , 2007 .

[32]  Richard C. Zimmerman,et al.  Response of Eelgrass Zostera marina to CO2 Enrichment: Possible Impacts of Climate Change and Potential for Remediation of Coastal Habitats , 2007 .

[33]  J. Park,et al.  Site-specific success of three transplanting methods and the effect of planting time on the establishment of Zostera marina transplants. , 2007, Marine pollution bulletin.

[34]  Frederick T. Short,et al.  A Global Crisis for Seagrass Ecosystems , 2006 .

[35]  Jack J. Middelburg,et al.  Major role of marine vegetation on the oceanic carbon cycle , 2004 .

[36]  V. Lieffers,et al.  Leaf area renewal, root retention and carbohydrate reserves in a clonal tree species following above‐ground disturbance , 2002 .

[37]  N. Rascio The Underwater Life of Secondarily Aquatic Plants: Some Problems and Solutions , 2002 .

[38]  S. Beer,et al.  Inorganic carbon utilization in marine angiosperms (seagrasses). , 2002, Functional plant biology : FPB.

[39]  Z. Ding THE EFFECTS OF ELEVATED INORGANIC CARBON CONCENTRATION ON PHOTOSYNTHESIS OF Ulva lactuca UNDER DIFFERENT TEMPERATURE , 2002 .

[40]  Xiaoe Yang,et al.  Physiological Response of Rice Cultivars with Different Zn-deficiency Sensitivity to Bicarbonate , 2002 .

[41]  J. Romero,et al.  Inorganic carbon sources for seagrass photosynthesis: an experimental evaluation of bicarbonate use in species inhabiting temperate waters , 2001 .

[42]  J. Hauxwell,et al.  Measuring production of Halodule wrightii: additional evidence suggests clipping underestimates growth rate , 2001 .

[43]  S. Beer,et al.  A buffer sensitive inorganic carbon utilisation system in Zostera marina , 2001 .

[44]  Frederick T. Short,et al.  The effects of global climate change on seagrasses , 1999 .

[45]  J. Romero,et al.  Bicarbonate utilization in seagrass photosynthesis: role of carbonic anhydrase in Posidonia oceanica (L.) Delile and Cymodocea nodosa (Ucria) Ascherson , 1999 .

[46]  C. Larsson,et al.  Bicarbonate uptake and utilization in marine macroalgae , 1999 .

[47]  K. McPherson,et al.  The role of carbohydrate reserves in the growth, resilience, and persistence of cabbage palm seedlings (Sabal palmetto) , 1998, Oecologia.

[48]  V. Römheld,et al.  Influence of increasing bicarbonate concentrations on plant growth, organic acid accumulation in roots and iron uptake by barley, sorghum, and maize , 1997 .

[49]  J. Romero,et al.  Effects of pH on seagrass photosynthesis: a laboratory and field assessment , 1997 .

[50]  R. Zimmerman,et al.  Impacts of CO2 Enrichment on Productivity and Light Requirements of Eelgrass , 1997, Plant physiology.

[51]  S. Beer,et al.  The acquisition of inorganic carbon by the seagrass Zostera marina , 1997 .

[52]  K. Dunton,et al.  Effect of in situ light reduction on the maintenance, growth and partitioning of carbon resources in Thalassia testudinum banks ex König , 1997 .

[53]  A. Larkum,et al.  Photosynthetic inorganic carbon acquisition of Posidonia australis , 1996 .

[54]  S. Beer,et al.  Photosynthesis of marine macroalgae and seagrasses in globally changing CO2 environments , 1996 .

[55]  T. V. Madsen,et al.  Photosynthetic acclimation of submersed angiosperms to CO2 and HCO−3 , 1996 .

[56]  R. Zimmerman,et al.  Carbon Partitioning in Eelgrass (Regulation by Photosynthesis and the Response to Daily Light-Dark Cycles) , 1995, Plant physiology.

[57]  S. Beer Mechanisms of inorganic carbon acquisition in marine macroalgae , 1994 .

[58]  Zvy Dubinsky,et al.  CO2 availability, carbonic anhydrase, and the annual dinoflagellate bloom in Lake Kinneret , 1994 .

[59]  M. Pedersen,et al.  INDUCIBLE MECHANISMS FOR HCO3– UTILIZATION AND REPRESSION OF PHOTORESPIRATION IN PROTOPLASTS AND THALLI OF THREE SPECIES OF ULVA (CHLOROPHYTA) 1 , 1993 .

[60]  M. J. Durako Photosynthetic utilization of CO2(aq) and HCO3- in Thalassia testudinum (Hydrocharitaceae) , 1993 .

[61]  Richard C. Zimmerman,et al.  Assessment of environmental suitability for growth of Zostera marina L. (eelgrass) in San Francisco Bay , 1991 .

[62]  K. Sand‐Jensen,et al.  Photosynthetic carbon assimilation in aquatic macrophytes , 1991 .

[63]  S. Maberly EXOGENOUS SOURCES OF INORGANIC CARBON FOR PHOTOSYNTHESIS BY MARINE MACROALGAE 1 , 1990 .

[64]  J. Beardall,et al.  Utilization of inorganic carbon by marine microalgae , 1987 .

[65]  S. Strother,et al.  The effect of pH on the inorganic carbon source for photosynthesis in the seagrass Zostera muelleri irmisch ex aschers , 1986 .

[66]  M. Peet,et al.  Acclimation to High CO(2) in Monoecious Cucumbers : II. Carbon Exchange Rates, Enzyme Activities, and Starch and Nutrient Concentrations. , 1986, Plant physiology.

[67]  K. Sand‐Jensen,et al.  Differential ability of marine and freshwater macrophytes to utilize HCO3- and CO2 , 1984 .

[68]  E. Paasche Coccolith Formation , 1962, Nature.