4+4: an architecture for evolving the Internet address space back toward transparency

We propose 4+4, a simple address extension architecture for Internet that provides an evolutionary approach to extending the existing IPv4 address space in comparison to more complex and disruptive approaches best exemplified by IPv6 deployment. The 4+4 architecture leverages the existence of Network Address Translators (NATs) and private address realms, and importantly, enables the return to end-to-end address transparency as the incremental deployment of 4+4 progresses. During the transition to 4+4, only NATs and end-hosts need to be updated and not the network routers. The 4+4 architecture retains the existing semantics of Internet names and addresses, and only proposes simple changes to the network layer that focus entirely on address extension. Encapsulation is used as the main tool to maintain backward compatibility. We present the design, implementation, and evaluation of the 4+4 architecture and discuss our implementation experiences and results from local and wide-area Internet experimentation. The 4+4 source code is freely available from the Web (comet.columbia.edu/ipv44) for experimentation.

[1]  Paul Francis,et al.  Addressing in internetwork protocols , 1994 .

[2]  Michael O'Dell,et al.  GSE - An Alternate Addressing Architecture for IPv6 , 1997 .

[3]  Jon Postel Extensible field addressing , 1977, RFC.

[4]  Stephen E. Deering,et al.  Path MTU discovery , 1990, RFC.

[5]  Robert M. Hinden,et al.  New Scheme for Internet Routing and Addressing (ENCAPS) for IPNG , 1996, RFC.

[6]  Brian E. Carpenter,et al.  Internet Transparency , 2000, RFC.

[7]  J. Noel Chiappa,et al.  The Nimrod Routing Architecture , 1996, RFC.

[8]  Paul Francis,et al.  The IP Network Address Translator (NAT) , 1994, RFC.

[9]  Mischa Schwartz,et al.  ACM SIGCOMM computer communication review , 2001, CCRV.

[10]  Paul Francis,et al.  IPNL: A NAT-extended internet architecture , 2001, SIGCOMM '01.

[11]  Jon Postel,et al.  Internet Protocol , 1981, RFC.

[12]  Jon Crowcroft,et al.  A Two-Tier Address Structure for the Internet: A Solution to the Problem of Address Space Exhaustion , 1992, RFC.

[13]  Jon Postel,et al.  Internet Control Message Protocol , 1981, RFC.

[14]  Matt Crawford,et al.  Router Renumbering for IPv6 , 2000, RFC.

[15]  Kazuaki Tsuchiya,et al.  Dual Stack Hosts using the "Bump-In-the-Stack" Technique (BIS) , 2000, RFC.

[16]  Paul Vixie,et al.  A DNS RR for specifying the location of services (DNS SRV) , 1996, RFC.

[17]  Paul Francis,et al.  Pip Near-term Architecture , 1994, RFC.

[18]  Michael S. Borella,et al.  Realm Specific IP: Framework , 2001, RFC.

[19]  Lixia Zhang,et al.  Separating Identifiers and Locators in Addresses: An Analysis of the GSE Proposal for IPv6 , 1999 .

[20]  Charles E. Perkins,et al.  Minimal Encapsulation within IP , 1996, RFC.

[21]  Stephen E. Deering,et al.  Internet Protocol, Version 6 (IPv6) Specification , 1995, RFC.

[22]  David R. Cheriton,et al.  An Architecture for Content Routing Support in the Internet , 2001, USITS.

[23]  Yakov Rekhter,et al.  Address Allocation for Private Internets , 1994, RFC.

[24]  Stephen Deering,et al.  Internet Protocol Version 6(IPv6) , 1998 .

[25]  Robert M. Hinden Simple Internet Protocol Plus White Paper , 1994, RFC.

[26]  Tony Hain,et al.  Architectural Implications of NAT , 2000, RFC.

[27]  Matt Holdrege,et al.  Protocol Complications with the IP Network Address Translator , 2001, RFC.