The Steiner tree problem on graphs: Inapproximability results

The Steiner tree problem on weighted graphs seeks a minimum weight subtree containing a given subset of the vertices (terminals). We show that it is NP-hard to approximate the Steiner tree problem within a factor 96/95. Our inapproximability results are stated in a parametric way, and explicit hardness factors would be improved automatically by providing gadgets and/or expanders with better parameters.

[1]  Santosh S. Vempala,et al.  On The Approximability Of The Traveling Salesman Problem , 2006, Comb..

[2]  F. Chung On concentrators, superconcentrators, generalizers, and nonblocking networks , 1979, The Bell System Technical Journal.

[3]  A. Lubotzky,et al.  Ramanujan graphs , 2017, Comb..

[4]  Martin Thimm,et al.  On the approximability of the Steiner tree problem , 2003, Theor. Comput. Sci..

[5]  Marshall W. Bern,et al.  The Steiner Problem with Edge Lengths 1 and 2 , 1989, Inf. Process. Lett..

[6]  S. Hougardy,et al.  Approximation Algorithms for the Steiner Tree Problem in Graphs , 2001 .

[7]  Carsten Lund,et al.  Proof verification and hardness of approximation problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[8]  Alex Zelikovsky,et al.  Improved Steiner tree approximation in graphs , 2000, SODA '00.

[9]  Miroslav Chlebík,et al.  Approximation Hardness for Small Occurrence Instances of NP-Hard Problems , 2003, CIAC.

[10]  D. Du,et al.  Steiner Trees in Industry , 2002 .

[11]  Zvi Galil,et al.  Explicit Constructions of Linear-Sized Superconcentrators , 1981, J. Comput. Syst. Sci..

[12]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[13]  P. Sarnak Some Applications of Modular Forms , 1990 .

[14]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[15]  R. Chapman SOME APPLICATIONS OF MODULAR FORMS (Cambridge Tracts in Mathematics 99) , 1992 .

[16]  Santosh S. Vempala,et al.  On The Approximability Of The Traveling Salesman Problem , 2006, Comb..