Projection-Specific Neuromodulation of Medial Prefrontal Cortex Neurons

Mnemonic persistent activity in the prefrontal cortex (PFC) constitutes the neural basis of working memory. To understand how neuromodulators contribute to the generation of persistent activity, it is necessary to identify the intrinsic properties of the layer V pyramidal neurons that transfer this information to downstream networks. Here we show that the somatic dynamic and integrative properties of layer V pyramidal neurons in the rat medial PFC depend on whether they project subcortically to the pons [corticopontine (CPn)] or to the contralateral cortex [commissural (COM)]. CPn neurons display low temporal summation and accelerate in firing frequency when depolarized, whereas COM neurons have high temporal summation and display spike frequency accommodation. In response to dynamic stimuli, COM neurons act as low-pass filters, whereas CPn neurons act as bandpass filters, resonating in the theta frequency range (3–6 Hz). The disparate subthreshold properties of COM and CPn neurons can be accounted for by differences in the hyperpolarization-activated cyclic nucleotide gated cation h-current. Interestingly, neuromodulators hypothesized to enhance mnemonic persistent activity affect COM and CPn neurons distinctly. Adrenergic modulation shifts the dynamic properties of CPn but not COM neurons and increases the excitability of CPn neurons significantly more than COM neurons. In response to cholinergic modulation, CPn neurons were much more likely to display activity-dependent intrinsic persistent firing than COM neurons. Together, these data suggest that the two categories of projection neurons may subserve separate functions in PFC and may be engaged differently during working memory processes.

[1]  T. Hijzen,et al.  Effects of cholinergic drug infusions into the dorsal part of the medial prefrontal cortex on delayed conditional discrimination performance in the rat , 1997, Behavioural Brain Research.

[2]  M. Sarter,et al.  Article Prefrontal Acetylcholine Release Controls Cue Detection on Multiple Timescales , 2022 .

[3]  Evgueniy V. Lubenov,et al.  Prefrontal Phase Locking to Hippocampal Theta Oscillations , 2005, Neuron.

[4]  G. Buzsáki,et al.  Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex , 2008, Nature Neuroscience.

[5]  A. Arnsten Adrenergic targets for the treatment of cognitive deficits in schizophrenia , 2004, Psychopharmacology.

[6]  E Marder,et al.  Memory from the dynamics of intrinsic membrane currents. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Gábor Tamás,et al.  Polarized and compartment-dependent distribution of HCN1 in pyramidal cell dendrites , 2002, Nature Neuroscience.

[8]  Graham V. Williams,et al.  Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory , 2007, Nature Neuroscience.

[9]  R. Miura,et al.  Quantification of membrane properties of trigeminal root ganglion neurons in guinea pigs. , 1986, Journal of neurophysiology.

[10]  Yasuo Kawaguchi,et al.  Firing-Pattern-Dependent Specificity of Cortical Excitatory Feed-Forward Subnetworks , 2008, The Journal of Neuroscience.

[11]  D. McCormick,et al.  α2A-Adrenoceptors Strengthen Working Memory Networks by Inhibiting cAMP-HCN Channel Signaling in Prefrontal Cortex , 2007, Cell.

[12]  S. Nelson,et al.  Layer V neurons in mouse cortex projecting to different targets have distinct physiological properties. , 2007, Journal of neurophysiology.

[13]  R. Miura,et al.  Subthreshold membrane resonance in neocortical neurons. , 1996, Journal of neurophysiology.

[14]  D. Surmeier,et al.  Dendritic Excitability of Mouse Frontal Cortex Pyramidal Neurons Is Shaped by the Interaction among HCN, Kir2, and Kleak Channels , 2005, The Journal of Neuroscience.

[15]  Hua Hu,et al.  M-Channels (Kv7/KCNQ Channels) That Regulate Synaptic Integration, Excitability, and Spike Pattern of CA1 Pyramidal Cells Are Located in the Perisomatic Region , 2007, The Journal of Neuroscience.

[16]  E. Miller,et al.  THE PREFRONTAL CORTEX AND COGNITIVE CONTROL , 2000 .

[17]  H. Dodt,et al.  Visualizing unstained neurons in living brain slices by infrared DIC-videomicroscopy , 1990, Brain Research.

[18]  T. Jay,et al.  Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris‐leucoagglutinin , 1991, The Journal of comparative neurology.

[19]  J. Gordon,et al.  Impaired hippocampal–prefrontal synchrony in a genetic mouse model of schizophrenia , 2010, Nature.

[20]  D. Jaffe,et al.  Dopamine Decreases the Excitability of Layer V Pyramidal Cells in the Rat Prefrontal Cortex , 1998, The Journal of Neuroscience.

[21]  Darin D Dougherty,et al.  Regional cerebral blood flow in the amygdala and medial prefrontal cortex during traumatic imagery in male and female Vietnam veterans with PTSD. , 2004, Archives of general psychiatry.

[22]  M. Hasselmo,et al.  Graded persistent activity in entorhinal cortex neurons , 2002, Nature.

[23]  D. McCormick,et al.  Two types of muscarinic response to acetylcholine in mammalian cortical neurons. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Lisa M. Giocomo,et al.  Cholinergic modulation of the resonance properties of stellate cells in layer II of medial entorhinal cortex. , 2010, Journal of neurophysiology.

[25]  M. Mauk,et al.  Interactions between prefrontal cortex and cerebellum revealed by trace eyelid conditioning. , 2009, Learning & memory.

[26]  D. Jaffe,et al.  Multiple effects of dopamine on layer V pyramidal cell excitability in rat prefrontal cortex. , 2001, Journal of neurophysiology.

[27]  Rui Xiao,et al.  Dopamine modulates an intrinsic mGluR5-mediated depolarization underlying prefrontal persistent activity , 2009, Nature Neuroscience.

[28]  Gary Glover,et al.  Frontostriatal connectivity and its role in cognitive control in parent-child dyads with ADHD. , 2007, The American journal of psychiatry.

[29]  Z. Molnár,et al.  Towards the classification of subpopulations of layer V pyramidal projection neurons , 2006, Neuroscience Research.

[30]  Rodrigo Andrade,et al.  Cell excitation enhances muscarinic cholinergic responses in rat association cortex , 1991, Brain Research.

[31]  C. Blakemore,et al.  Pyramidal neurons in layer 5 of the rat visual cortex. II. Development of electrophysiological properties , 1994, The Journal of comparative neurology.

[32]  J. Glowinski,et al.  Hippocampo‐prefrontal cortex pathway: Anatomical and electrophysiological characteristics , 2000, Hippocampus.

[33]  CR Yang,et al.  Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: modulation of dendritic-somatic signal integration , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  Szabolcs Káli,et al.  Differences in subthreshold resonance of hippocampal pyramidal cells and interneurons: the role of h-current and passive membrane characteristics , 2010, The Journal of physiology.

[35]  Matthew F. Nolan,et al.  A Behavioral Role for Dendritic Integration HCN1 Channels Constrain Spatial Memory and Plasticity at Inputs to Distal Dendrites of CA1 Pyramidal Neurons , 2004, Cell.

[36]  R. J. Meijer,et al.  Collateral projections from the rat hippocampal formation to the lateral and medial prefrontal cortex , 1997, Hippocampus.

[37]  D. Lewis,et al.  Neuroplasticity of Neocortical Circuits in Schizophrenia , 2008, Neuropsychopharmacology.

[38]  F. Bymaster,et al.  Role of the cholinergic muscarinic system in bipolar disorder and related mechanism of action of antipsychotic agents , 2002, Molecular Psychiatry.

[39]  B. Sakmann,et al.  Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy , 1993, Pflügers Archiv.

[40]  Simon J. Mitchell,et al.  Direct measurement of somatic voltage clamp errors in central neurons , 2008, Nature Neuroscience.

[41]  Huaixing Wang,et al.  A specialized NMDA receptor function in layer 5 recurrent microcircuitry of the adult rat prefrontal cortex , 2008, Proceedings of the National Academy of Sciences.

[42]  T. Hyde,et al.  Cholinergic systems and schizophrenia: primary pathology or epiphenomena? , 2001, Journal of Chemical Neuroanatomy.

[43]  R. Vertes,et al.  Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat , 2007, Brain Structure and Function.

[44]  D. Bucci,et al.  M1 Receptors Mediate Cholinergic Modulation of Excitability in Neocortical Pyramidal Neurons , 2009, The Journal of Neuroscience.

[45]  Walter Senn,et al.  Hyperpolarization-activated current Ih disconnects somatic and dendritic spike initiation zones in layer V pyramidal neurons. , 2003, Journal of neurophysiology.

[46]  M. Hasselmo,et al.  Mechanism of Graded Persistent Cellular Activity of Entorhinal Cortex Layer V Neurons , 2006, Neuron.

[47]  Philippe Séguéla,et al.  Metabotropic induction of persistent activity in layers II/III of anterior cingulate cortex. , 2010, Cerebral cortex.

[48]  G. Quirk,et al.  Fear Conditioning and Extinction Differentially Modify the Intrinsic Excitability of Infralimbic Neurons , 2008, The Journal of Neuroscience.

[49]  G. Quirk,et al.  Consolidation of Fear Extinction Requires NMDA Receptor-Dependent Bursting in the Ventromedial Prefrontal Cortex , 2007, Neuron.

[50]  A. Arnsten,et al.  Stimulants: Therapeutic Actions in ADHD , 2006, Neuropsychopharmacology.

[51]  Hongtu Zhu,et al.  A developmental fMRI study of self-regulatory control in Tourette's syndrome. , 2007, The American journal of psychiatry.

[52]  T. Robbins,et al.  Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates , 2004, Neuroscience & Biobehavioral Reviews.

[53]  S. Hestrin,et al.  Intracortical circuits of pyramidal neurons reflect their long-range axonal targets , 2009, Nature.

[54]  S. Haj-Dahmane,et al.  Ionic mechanism of the slow afterdepolarization induced by muscarinic receptor activation in rat prefrontal cortex. , 1998, Journal of neurophysiology.

[55]  W. Singer,et al.  Dynamic predictions: Oscillations and synchrony in top–down processing , 2001, Nature Reviews Neuroscience.

[56]  Y. Wan,et al.  Theta-frequency membrane resonance and its ionic mechanisms in rat subicular pyramidal neurons , 2006, Neuroscience.

[57]  E. Miller,et al.  The prefontral cortex and cognitive control , 2000, Nature Reviews Neuroscience.

[58]  Rishikesh Narayanan,et al.  Long-Term Potentiation in Rat Hippocampal Neurons Is Accompanied by Spatially Widespread Changes in Intrinsic Oscillatory Dynamics and Excitability , 2007, Neuron.

[59]  R. Shigemoto,et al.  Immunohistochemical localization of Ih channel subunits, HCN1–4, in the rat brain , 2004, The Journal of comparative neurology.

[60]  S. Siegelbaum,et al.  Molecular and Functional Heterogeneity of Hyperpolarization-Activated Pacemaker Channels in the Mouse CNS , 2000, The Journal of Neuroscience.

[61]  Lyle J. Graham,et al.  Complementary Theta Resonance Filtering by Two Spatially Segregated Mechanisms in CA1 Hippocampal Pyramidal Neurons , 2009, The Journal of Neuroscience.

[62]  L. Swanson The Rat Brain in Stereotaxic Coordinates, George Paxinos, Charles Watson (Eds.). Academic Press, San Diego, CA (1982), vii + 153, $35.00, ISBN: 0 125 47620 5 , 1984 .

[63]  Sholl Da Dendritic organization in the neurons of the visual and motor cortices of the cat. , 1953 .

[64]  Trevor W Robbins,et al.  Cholinergic modulation of visual attention and working memory: dissociable effects of basal forebrain 192-IgG-saporin lesions and intraprefrontal infusions of scopolamine. , 2004, Learning & memory.

[65]  S. Siegelbaum,et al.  Properties of Hyperpolarization-Activated Pacemaker Current Defined by Coassembly of Hcn1 and Hcn2 Subunits and Basal Modulation by Cyclic Nucleotide , 2001, The Journal of general physiology.

[66]  Xiao-Jing Wang Synaptic reverberation underlying mnemonic persistent activity , 2001, Trends in Neurosciences.

[67]  Krista I Kinard,et al.  Molecular Mapping of the Binding Site for a Blocker of Hyperpolarization-Activated, Cyclic Nucleotide-Modulated Pacemaker Channels , 2007, Journal of Pharmacology and Experimental Therapeutics.

[68]  M. Larkum,et al.  High I(h) channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. , 2001, Journal of neurophysiology.

[69]  Mark S. George,et al.  Neurocognitive deficits and prefrontal cortical atrophy in patients with schizophrenia , 2008, Schizophrenia Research.

[70]  D. Ulrich,et al.  Dendritic resonance in rat neocortical pyramidal cells. , 2002, Journal of neurophysiology.

[71]  C. Blakemore,et al.  Pyramidal neurons in layer 5 of the rat visual cortex. I. Correlation among cell morphology, intrinsic electrophysiological properties, and axon targets , 1994, The Journal of comparative neurology.

[72]  D. Law-Tho,et al.  Noradrenaline Decreases Transmission of NMDA‐ and Non‐NMDA‐receptor Mediated Monosynaptic EPSPs in Rat Prefrontal Neurons In Vitro , 1993, The European journal of neuroscience.

[73]  J. Strawn,et al.  Noradrenergic dysfunction and the psychopharmacology of posttraumatic stress disorder , 2008, Depression and anxiety.

[74]  A. Egorov,et al.  Muscarinic control of graded persistent activity in lateral amygdala neurons , 2006, The European journal of neuroscience.

[75]  L. Scahill Alpha-2 Adrenergic Agonists in Children with Inattention, Hyperactivity and Impulsiveness , 2009, CNS Drugs.

[76]  Mark Laubach,et al.  Top-Down Control of Motor Cortex Ensembles by Dorsomedial Prefrontal Cortex , 2006, Neuron.

[77]  A. Arnsten,et al.  Catecholamine and second messenger influences on prefrontal cortical networks of "representational knowledge": a rational bridge between genetics and the symptoms of mental illness. , 2007, Cerebral cortex.

[78]  R. Craft,et al.  CB1 receptor mediation of cannabinoid behavioral effects in male and female rats , 2004, Psychopharmacology.

[79]  J. Magee Dendritic Hyperpolarization-Activated Currents Modify the Integrative Properties of Hippocampal CA1 Pyramidal Neurons , 1998, The Journal of Neuroscience.

[80]  Rony Paz,et al.  Theta synchronizes the activity of medial prefrontal neurons during learning. , 2008, Learning & memory.

[81]  G. Stuart,et al.  Action Potential Initiation and Propagation in Layer 5 Pyramidal Neurons of the Rat Prefrontal Cortex: Absence of Dopamine Modulation , 2003, The Journal of Neuroscience.

[82]  M. Witter,et al.  Projections from the parahippocampal region to the prefrontal cortex in the rat: evidence of multiple pathways , 2002, The European journal of neuroscience.

[83]  G. Stuart,et al.  Site independence of EPSP time course is mediated by dendritic I(h) in neocortical pyramidal neurons. , 2000, Journal of neurophysiology.

[84]  S. Southwick,et al.  Neural correlates of memories of childhood sexual abuse in women with and without posttraumatic stress disorder. , 1999, The American journal of psychiatry.

[85]  T. Jay,et al.  Interaction of dopamine D1 with NMDA NR1 receptors in rat prefrontal cortex , 2009, European Neuropsychopharmacology.

[86]  S. Pliszka,et al.  Attention‐Deficit‐Hyperactivity Disorder: An Update , 2009, Pharmacotherapy.

[87]  S. Kapur Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. , 2003, The American journal of psychiatry.

[88]  A. Lavin,et al.  α2‐Noradrenergic receptors activation enhances excitability and synaptic integration in rat prefrontal cortex pyramidal neurons via inhibition of HCN currents , 2007, The Journal of physiology.

[89]  S. DeKosky,et al.  Superior frontal cortex cholinergic axon density in mild cognitive impairment and early Alzheimer disease. , 2007, Archives of neurology.

[90]  D. Johnston,et al.  State-Dependent Modulation of Amygdala Inputs by Dopamine-Induced Enhancement of Sodium Currents in Layer V Entorhinal Cortex , 2007, The Journal of Neuroscience.

[91]  Huibert D. Mansvelder,et al.  Distributed Network Actions by Nicotine Increase the Threshold for Spike-Timing-Dependent Plasticity in Prefrontal Cortex , 2007, Neuron.

[92]  D. Surmeier,et al.  M1 muscarinic receptor modulation of Kir2 channels enhances temporal summation of excitatory synaptic potentials in prefrontal cortex pyramidal neurons. , 2007, Journal of neurophysiology.

[93]  S. Haj-Dahmane,et al.  Muscarinic Activation of a Voltage-Dependent Cation Nonselective Current in Rat Association Cortex , 1996, The Journal of Neuroscience.

[94]  J. Storm,et al.  Two forms of electrical resonance at theta frequencies, generated by M‐current, h‐current and persistent Na+ current in rat hippocampal pyramidal cells , 2002, The Journal of physiology.

[95]  S. Haj-Dahmane,et al.  Muscarinic receptors regulate two different calcium‐dependent non‐selective cation currents in rat prefrontal cortex , 1999, The European journal of neuroscience.

[96]  D. McCormick,et al.  Control of firing mode of corticotectal and corticopontine layer V burst-generating neurons by norepinephrine, acetylcholine, and 1S,3R- ACPD , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[97]  Michael D Mauk,et al.  Temporal patterns of inputs to cerebellum necessary and sufficient for trace eyelid conditioning. , 2010, Journal of neurophysiology.

[98]  Jan G. Bjaalie,et al.  Organization of the pontine nuclei , 1992, Neuroscience Research.

[99]  D. Johnston,et al.  The h Channel Mediates Location Dependence and Plasticity of Intrinsic Phase Response in Rat Hippocampal Neurons , 2008, The Journal of Neuroscience.

[100]  M. Wilson,et al.  Phase precession of medial prefrontal cortical activity relative to the hippocampal theta rhythm , 2005, Hippocampus.

[101]  J. Tytgat,et al.  Functional Heteromerization of HCN1 and HCN2 Pacemaker Channels* , 2001, The Journal of Biological Chemistry.

[102]  Serge Charpak,et al.  Two populations of layer v pyramidal cells of the mouse neocortex: development and sensitivity to anesthetics. , 2005, Journal of neurophysiology.

[103]  H. Markram,et al.  Morphological, Electrophysiological, and Synaptic Properties of Corticocallosal Pyramidal Cells in the Neonatal Rat Neocortex , 2006 .

[104]  Y. Yarom,et al.  Resonance, oscillation and the intrinsic frequency preferences of neurons , 2000, Trends in Neurosciences.

[105]  G. Stuart,et al.  Single Ih Channels in Pyramidal Neuron Dendrites: Properties, Distribution, and Impact on Action Potential Output , 2006, The Journal of Neuroscience.

[106]  E. Vizi,et al.  Alpha2-adrenergic receptors modify dendritic spike generation via HCN channels in the prefrontal cortex. , 2008, Journal of neurophysiology.

[107]  Yasuo Kawaguchi,et al.  Heterogeneity of phasic cholinergic signaling in neocortical neurons. , 2007, Journal of neurophysiology.

[108]  W. Klimesch,et al.  Oscillatory mechanisms of process binding in memory , 2010, Neuroscience & Biobehavioral Reviews.

[109]  Y. Kawaguchi,et al.  Recurrent Connection Patterns of Corticostriatal Pyramidal Cells in Frontal Cortex , 2006, The Journal of Neuroscience.