A finite element framework based on bivariate simplex splines on triangle configurations

Abstract Recently, triangle configuration based bivariate simplex splines (referred to as TCB-spline) have been introduced to the geometric computing community. TCB-splines retain many attractive theoretic properties of classical B-splines, such as partition of unity, local support, polynomial reproduction and automatic inbuilt high-order smoothness. In this paper, we propose a computational framework for isogeometric analysis using TCB-splines. The centroidal Voronoi tessellation method is used to generate a set of knots that are distributed evenly over the domain. Then, knot subsets are carefully selected by a so-called link triangulation procedure (LTP), on which shape functions are defined in a recursive manner. To achieve high-precision numerical integration, triangle faces served as background integration cells are obtained by triangulating the entire domain restricted to all knot lines, i.e., line segments defined by any two knots in a knot subset. Various numerical examples are carried out to demonstrate the efficiency, flexibility and optimal convergence rates of the proposed method.

[1]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[2]  R. Borst,et al.  Powell–Sabin B-splines for smeared and discrete approaches to fracture in quasi-brittle materials , 2016 .

[3]  Thomas A. Grandine,et al.  The computational cost of simplex spline functions , 1987 .

[4]  Jörg Peters,et al.  Refinable C1 spline elements for irregular quad layout , 2016, Comput. Aided Geom. Des..

[5]  C. Micchelli,et al.  Blossoming begets B -spline bases built better by B -patches , 1992 .

[6]  Hendrik Speleers,et al.  Isogeometric analysis with Powell–Sabin splines for advection–diffusion–reaction problems , 2012 .

[7]  T. Hughes,et al.  Smooth cubic spline spaces on unstructured quadrilateral meshes with particular emphasis on extraordinary points: Geometric design and isogeometric analysis considerations , 2017 .

[8]  Charles A Micchelli,et al.  A Constructive Approach to Kergin Interpolation in R(k). , 1978 .

[9]  Trond Kvamsdal,et al.  Isogeometric analysis using LR B-splines , 2014 .

[10]  John A. Evans,et al.  Isogeometric triangular Bernstein–Bézier discretizations: Automatic mesh generation and geometrically exact finite element analysis , 2016 .

[11]  Marian Neamtu,et al.  Bivariate simplex B-splines: a new paradigm , 2001, Proceedings Spring Conference on Computer Graphics.

[12]  René de Borst,et al.  Powell–Sabin B‐splines and unstructured standard T‐splines for the solution of the Kirchhoff–Love plate theory exploiting Bézier extraction , 2016 .

[13]  Thomas J. R. Hughes,et al.  Truncated T-splines: Fundamentals and methods , 2017 .

[14]  Jan Grošelj A normalized representation of super splines of arbitrary degree on Powell–Sabin triangulations , 2016 .

[15]  Gerald Farin,et al.  Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..

[16]  Marian Neamtu,et al.  Delaunay configurations and multivariate splines: A generalization of a result of B. N. Delaunay , 2007 .

[17]  Hendrik Speleers,et al.  Construction and analysis of cubic Powell-Sabin B-splines , 2017, Comput. Aided Geom. Des..

[18]  Jean-Claude Spehner,et al.  Centroid Triangulations from k-Sets , 2011, Int. J. Comput. Geom. Appl..

[19]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[20]  Xiaoping Qian,et al.  Isogeometric analysis with Bézier tetrahedra , 2017 .

[21]  Timon Rabczuk,et al.  Reproducing Kernel Triangular B-spline-based FEM for Solving PDEs , 2013 .

[22]  Xiaoping Qian,et al.  Isogeometric analysis on triangulations , 2014, Comput. Aided Des..

[23]  C. Micchelli,et al.  BLOSSOMING BEGETS ß-SPLINE BASES BUILT BETTER BY ß-PATCHES , 2010 .

[24]  Fehmi Cirak,et al.  Isogeometric analysis using manifold-based smooth basis functions , 2016, ArXiv.

[25]  Marian Neamtu,et al.  What is the natural generalization of univariate splines to higher dimensions , 2001 .

[26]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[27]  Zhonggui Chen,et al.  Surface reconstruction using simplex splines on feature-sensitive configurations , 2017, Comput. Aided Geom. Des..

[28]  Hendrik Speleers,et al.  Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations , 2013 .

[29]  Xiaoping Qian,et al.  Continuity and convergence in rational triangular Bézier spline based isogeometric analysis , 2015 .

[30]  Hendrik Speleers,et al.  From NURBS to NURPS geometries , 2013 .

[31]  Bert Jüttler,et al.  THB-splines: An effective mathematical technology for adaptive refinement in geometric design and isogeometric analysis , 2016 .

[32]  C. R. Traas,et al.  Practice of Bivariate Quadratic Simplicial Splines , 1990 .

[33]  Hendrik Speleers,et al.  A locking-free model for Reissner-Mindlin plates: Analysis and isogeometric implementation via NURBS and triangular NURPS , 2015 .

[34]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[35]  Hendrik Speleers,et al.  Optimizing domain parameterization in isogeometric analysis based on Powell-Sabin splines , 2015, J. Comput. Appl. Math..

[36]  H. Guillard,et al.  A stabilized Powell–Sabin finite-element method for the 2D Euler equations in supersonic regime , 2018, Computer Methods in Applied Mechanics and Engineering.

[37]  T. Grandine The stable evaluation of multivariate simplex splines , 1988 .

[38]  Jianmin Zheng,et al.  Bivariate splines over triangular meshes for freeform surface modeling with sharp features , 2016 .

[39]  J. Snoeyink,et al.  Computations of Delaunay and Higher Order Triangulations, with Applications to Splines , 2007 .

[40]  Tom Lyche,et al.  T-spline simplification and local refinement , 2004, ACM Trans. Graph..

[41]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[42]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[43]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[44]  Tom Lyche,et al.  Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..

[45]  Hendrik Speleers,et al.  Numerical solution of partial differential equations with Powell-Sabin splines , 2006 .

[46]  Xin Li,et al.  Blended B-spline construction on unstructured quadrilateral and hexahedral meshes with optimal convergence rates in isogeometric analysis , 2018, Computer Methods in Applied Mechanics and Engineering.

[47]  G. R. Cowper,et al.  Gaussian quadrature formulas for triangles , 1973 .

[48]  C. D. Boor,et al.  Splines as linear combinations of B-splines. A Survey , 1976 .

[49]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[50]  Larry L. Schumaker,et al.  Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.

[51]  Giancarlo Sangalli,et al.  Analysis-suitable G1 multi-patch parametrizations for C1 isogeometric spaces , 2016, Comput. Aided Geom. Des..

[52]  Jack Snoeyink,et al.  Quadratic and cubic b-splines by generalizing higher-order voronoi diagrams , 2007, SCG '07.

[53]  André Galligo,et al.  Hermite type Spline spaces over rectangular meshes with complex topological structures , 2017 .

[54]  Robert L. Cook,et al.  Stochastic sampling in computer graphics , 1988, TOGS.

[55]  Xin Li,et al.  Hierarchical T-splines: Analysis-suitability, Bézier extraction, and application as an adaptive basis for isogeometric analysis , 2014, 1404.4346.