Mesosphere inversion layers and stratosphere temperature enhancements

[1] It has been known for at least 30 years that vertically narrow thermal layers form within the middle atmosphere. Two types of temperature enhancements, the low-latitude to midlatitude mesosphere inversion layer (MIL) and the high-latitude winter stratosphere temperature enhancement (STE), have both received much attention within the atmospheric science community because of their unexplained formation mechanisms and potential impacts on the middle-atmosphere global circulation. Numerous experimental, numerical, and theoretical studies have attempted to explain certain aspects of these respective thermal layers, but no one theory consistently and satisfactorily describes all the features observed. We present a review of the literature and explicitly propose a classification scheme based on the different formation mechanisms suspected to cause these events. For the MIL we demonstrate that there are two subtypes. The first one is tidally driven and tends to occur above ∼85 km. This MIL originates from large-amplitude tidal waves propagating into the mesosphere and their subsequent nonlinear interactions with gravity waves, which can often create the appearance of a “double MIL” separated by approximately one vertical tidal wavelength (∼25 km). The other subtype of MIL is formed by a climatological planetary wave dissipation mechanism that occurs at a zero-wind line. The dissipation of the planetary wave tends to generate a mesoscale (∼1000 km) inversion layer in the range of 65–80 km. These two formation mechanisms explain a host of observed characteristics, including the reason behind the downward progression of some MILs and not others, the different climatological nature of the two forms of MIL events, and the relative scarcity of MIL observations at high latitudes. The STE is believed to be generated by an altogether different process, namely, the nonlinear interaction between the polar vortex and planetary waves/Aleutian High. The induced temperatures typically peak around 40 km and often exceed 300 K, generating what appears to be a “low, hot stratopause.” When vertical temperature profiles are combined with synoptic analyses, one observes that the STE is the consequence of high-latitude vortex interactions creating a baroclinic atmosphere, i.e., a downward adiabatic compression induced by an ageostropic flow. We summarize the details of the relationship between this feature and sudden stratospheric warmings, as well as the potential for in situ gravity wave generation. We close with a review of currently unexplained MIL/STE features and offer new directions for future middle-atmosphere thermal layer research.

[1]  F. Schmidlin,et al.  Temperature inversions near 75 km , 1976 .

[2]  Allan I. Carswell,et al.  Measurements of gravity wave activity within and around the Arctic stratospheric vortex , 1997 .

[3]  R. Lindzen Wave-mean flow interactions in the upper atmosphere , 1973 .

[4]  M. Baldwin Downward Propagation of the Arctic Oscillation from the Stratosphere to the Troposphere , 1999 .

[5]  T. Palmer,et al.  Breaking planetary waves in the stratosphere , 1983, Nature.

[6]  D. Strobel,et al.  The Zonally Averaged Circulation of the Middle Atmosphere , 1977 .

[7]  Thomas D. Wilkerson,et al.  Observed coupling of the mesosphere inversion layer to the thermal tidal structure , 1998 .

[8]  M. Alexander A Simulated Spectrum of Convectively Generated Gravity Waves: Propagation from the Tropopause to the Mesopause and Effects on the Middle Atmosphere , 1996 .

[9]  W. Ward,et al.  Mesospheric temperature inversions with overlying nearly adiabatic lapse rate: An Indication of a well‐mixed turbulent layer , 1995 .

[10]  S. Eckermann,et al.  VHF radar observations of gravity-wave production by cold fronts over southern Australia , 1993 .

[11]  Alain Hauchecorne,et al.  Mesospheric temperature inversion and gravity wave breaking , 1987 .

[12]  D. Keuer,et al.  Variability of the mesospheric wind field at middle and Arctic latitudes in winter and its relation to stratospheric circulation disturbances , 2002 .

[13]  J. J. Barnett,et al.  The mean meridional temperature behaviour of the stratosphere from November 1970 to November 1971 derived from measurements by the Selective Chopper Radiometer on Nimbus IV , 1974 .

[14]  R. Hodges,et al.  GENERATION OF TURBULENCE IN THE UPPER ATMOSPHERE BY INTERNAL GRAVITY WAVES. , 1967 .

[15]  Kevin Hamilton,et al.  Comprehensive meteorological modelling of the middle atmosphere: a tutorial review , 1996 .

[16]  J. Holton,et al.  The Gravity Wave Response above Deep Convection in a Squall Line Simulation. , 1995 .

[17]  M. Larsen,et al.  A shear instability seeding mechanism for quasiperiodic radar echoes , 2000 .

[18]  L. Thomas,et al.  VHF echoes from the midlatitude mesosphere and the thermal structure observed by lidar , 1996 .

[19]  E. M. Dewan,et al.  On the origin of mesospheric bores , 2001 .

[20]  N. Mitchell,et al.  Lidar observations of long-period gravity waves in the stratosphere , 1991 .

[21]  Rolando R. Garcia,et al.  The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere , 1985 .

[22]  H. Kanzawa Warm stratopause in the Antarctic winter , 1989 .

[23]  C. McLandress,et al.  On the importance of gravity waves in the middle atmosphere and their parameterization in general circulation models , 1998 .

[24]  Kohei Mizutani,et al.  Lidar measurements of mesospheric temperature inversion at a low latitude , 2001 .

[25]  Murry L. Salby,et al.  Fundamentals of atmospheric physics , 1995 .

[26]  J. Weinstock Nonlinear Theory of Gravity Waves: Momentum Deposition, Generalized Rayleigh Friction, and Diffusion , 1982 .

[27]  R. Stull,et al.  Meteorology for Scientists and Engineers , 1999 .

[28]  R. Lindzen Thermally driven diurnal tide in the atmosphere , 1967 .

[29]  M. Memmesheimer,et al.  A zonal-averaged dynamical model for the middle atmosphere including gravity wave mean flow interaction: Solstice conditions , 1983 .

[30]  John H. Shaw,et al.  Zonal winds between 25 and 120 km obtained from solar occultation spectra , 1987 .

[31]  David W. Rusch,et al.  Climatology and trends of mesospheric (58–90 km) temperatures based upon 1982–1986 SME Limb scattering profiles , 1989 .

[32]  R. Lindzen TIDES AND GRAVITY WAVES IN THE UPPER ATMOSPHERE , 1971 .

[33]  R. Blanchard,et al.  Gravity Wave Structure between 60 and 90 km Inferred from Space Shuttle Reentry Data , 1989 .

[34]  S. Avery,et al.  Global‐scale wave model estimates of nonmigrating tidal effects , 1997 .

[35]  J. Holton,et al.  The Role of Gravity Wave Induced Drag and Diffusion in the Momentum Budget of the Mesosphere , 1982 .

[36]  J. Wallace,et al.  Atmospheric Science: An Introductory Survey , 1977 .

[37]  J. Thayer,et al.  Synoptic scale study of the Arctic polar vortex's influence on the middle atmosphere, 1, Observations , 2002 .

[38]  J. Meriwether,et al.  Rayleigh lidar observations of mesosphere temperature structure , 1994 .

[39]  C. O. Hines,et al.  Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 2: Broad and quasi monochromatic spectra, and implementation , 1997 .

[40]  Dong L. Wu,et al.  Gravity‐wave‐scale temperature fluctuations seen by the UARS MLS , 1996 .

[41]  G. Hernández Climatology of the upper mesosphere temperature above South Pole (90°S): Mesospheric cooling during 2002 , 2003 .

[42]  Dong L. Wu,et al.  Mesospheric inversions and their relationship to planetary wave structure , 2002 .

[43]  Raymond G. Roble,et al.  A thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (time-GCM): Equinox solar cycle minimum simulations (30–500 km) , 1994 .

[44]  A. O'Neill,et al.  Simulations of linear and nonlinear disturbances in the stratosphere , 1988 .

[45]  Russell E. Warren,et al.  Rayleigh lidar system for middle atmosphere research in the arctic , 1997 .

[46]  Jeffrey M. Forbes,et al.  On modeling migrating solar tides , 1995 .

[47]  Tim Palmer,et al.  The «surf zone» in the stratosphere , 1984 .

[48]  D. Hysell,et al.  The 30‐MHz radar interferometer studies of midlatitude E region irregularities , 2000 .

[49]  D. Hysell,et al.  HF radar observations of quasiperiodic E layer echoes over North America , 1999 .

[50]  J. Holton,et al.  The Role of Forced Planetary Waves in the Annual Cycle of the Zonal Mean Circulation of the Middle Atmosphere , 1980 .

[51]  J. Meriwether,et al.  Rayleigh lidar observations of a mesospheric inversion layer during night and day , 2001 .

[52]  C. Hines,et al.  Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 1: Basic formulation , 1997 .

[53]  Alain Hauchecorne,et al.  Recent observations of mesospheric temperature inversions , 1997 .

[54]  Chester S. Gardner,et al.  Lidar observations of the temperature profile between 25 and 103 km: Evidence of strong tidal perturbation , 1995 .

[55]  M. Joan Alexander,et al.  Gravity wave momentum flux in the lower stratosphere over convection , 1995 .

[56]  W. L. Jones,et al.  The Coupling of Momentum Between Internal Gravity Waves and Mean Flow: A Numerical Study , 1971 .

[57]  Martin G. Mlynczak,et al.  Is chemical heating a major cause of the mesosphere inversion layer , 1995 .

[58]  T. Dunkerton Wave Transience in a Compressible Atmosphere. Part III: The Saturation of Internal Gravity Waves in the Mesophere , 1982 .

[59]  Allan I. Carswell,et al.  Lidar observations of gravity wave activity and Arctic stratospheric vortex core warming , 1998 .

[60]  E. Dewan,et al.  Further investigations of a mesospheric inversion layer observed in the ALOHA-93 Campaign , 2002 .

[61]  G. Manney,et al.  Simulations of the February 1979 stratospheric sudden warming: Model comparisons and three-dimensional evolution , 1994 .

[62]  C. Hines Eddy diffusion coefficients due to instabilities in internal gravity waves , 1970 .

[63]  Keith P. Shine,et al.  On the “Downward Control” of Extratropical Diabatic Circulations by Eddy-Induced Mean Zonal Forces , 1991 .

[64]  W. Skinner,et al.  Long-term variability in the solar diurnal tide observed by HRDI and simulated by the GSWM , 1995 .

[65]  J. Holton,et al.  Stratosphere‐troposphere exchange , 1995 .

[66]  H. Loon,et al.  The Stratosphere : Phenomena , History and Relevance , 2009 .

[67]  Gary R. Swenson,et al.  A multidiagnostic investigation of the mesospheric bore phenomenon , 2003 .

[68]  Raymond G. Roble,et al.  Mesospheric and lower thermospheric manifestations of a stratospheric warming event over Eureka, Canada (80°N) , 2000 .

[69]  C. Gardner,et al.  Seasonal variations of the atmospheric temperature structure at South Pole , 2003 .

[70]  J. Holton An introduction to dynamic meteorology , 2004 .

[71]  V. Harvey,et al.  A Climatology of the Aleutian High , 1996 .

[72]  K. Labitzke Stratospheric-mesospheric midwinter disturbances - A summary of observed characteristics , 1981 .

[73]  J. Meriwether,et al.  A review of the mesosphere inversion layer phenomenon , 2000 .

[74]  K. Labitzke Temperature Changes in the Mesosphere and Stratosphere Connected with Circulation Changes in Winter , 1972 .

[75]  J. Meriwether,et al.  Analysis of a temperature inversion event in the lower mesosphere , 2004 .

[76]  Alain Hauchecorne,et al.  Density and temperature profiles obtained by lidar between 35 and 70 km , 1980 .

[77]  Chester S. Gardner,et al.  Thermal Structure of the Mesopause Region (80–105 km) at 40°N Latitude. Part I: Seasonal Variations , 2000 .

[78]  Alain Hauchecorne,et al.  Semidiurnal and diurnal tidal effects in the middle atmosphere as seen by Rayleigh lidar , 1991 .

[79]  Rolando R. Garcia,et al.  On temperature inversions and the mesospheric surf zone , 2001 .

[80]  T. Matsuno,et al.  A Dynamical Model of the Stratospheric Sudden Warming , 1971 .

[81]  D. Murtagh,et al.  Simultaneous measurements of the O2(¹Δ) and O2(¹Σ) Airglows and ozone in the daytime mesosphere , 2001 .

[82]  Chester S. Gardner,et al.  Two-frequency Lidar technique for mesospheric Na temperature measurements , 1990 .

[83]  Andrew J. Gerrard,et al.  All‐sky imaging observations of mesospheric fronts in OI 557.7 nm and broadband OH airglow emissions: Analysis of frontal structure, atmospheric background conditions, and potential sourcing mechanisms , 2004 .

[84]  G. Papen,et al.  Observations of strong wind shears and temperature enhancements during several sporadic Na layer eve , 1995 .

[85]  Chester S. Gardner,et al.  Narrowband lidar technique for sodium temperature and Doppler wind observations of the upper atmosphere , 1991 .

[86]  Dong L. Wu,et al.  Satellite observations of atmospheric variances: A possible indication of gravity waves , 1996 .

[87]  C. Gardner,et al.  Unstable layers in the mesopause region observed with Na lidar during the Turbulent Oxygen Mixing Experiment (TOMEX) campaign , 2004 .

[88]  R. Hodges Eddy diffusion coefficients due to instabilities in internal gravity waves. , 1969 .

[89]  M. Alexander,et al.  Gravity wave dynamics and effects in the middle atmosphere , 2003 .

[90]  R. P. Lowe,et al.  Spectrometric and Imaging Measurements of a Spectacular Gravity Wave Event Observed During the ALOHA-93 Campaign , 1995 .

[91]  G. Mellor,et al.  Development of a turbulence closure model for geophysical fluid problems , 1982 .

[92]  C. Leovy Simple Models of Thermally Driven Mesopheric Circulation , 1964 .

[93]  Rolando R. Garcia,et al.  'Downward control' of the mean meridional circulation and temperature distribution of the polar winter stratosphere , 1994 .

[94]  Mark P. Baldwin,et al.  Stratospheric Harbingers of Anomalous Weather Regimes , 2001, Science.

[95]  D. Hartmann,et al.  The dynamics of the stratospheric polar vortex and its relation to springtime ozone depletions. , 1991, Science.

[96]  M. D. Burrage,et al.  GSWM-98: Results for migrating solar tides , 1999 .

[97]  K. Mizutani,et al.  Rayleigh lidar observations of mesospheric inversion layers at Poker Flat, Alaska (65 °N, 147°W) , 2001 .

[98]  H. Porter,et al.  Seasonal variations of the diurnal tide induced by gravity wave filtering , 1998 .

[99]  T. Dunkerton Stochastic Parameterization of Gravity Wave Stresses , 1982 .

[100]  Chester S. Gardner,et al.  Measurements of Atmospheric Stability in the Mesopause Region at Starfire Optical Range, NM , 2003 .

[101]  C. Meyer Erratum: ``Gravity wave interactions with the diurnal propagating tide'' , 1999 .

[102]  J. Holton The Influence of Gravity Wave Breaking on the General Circulation of the Middle Atmosphere , 1983 .

[103]  R. Lindzen Turbulence and stress owing to gravity wave and tidal breakdown , 1981 .

[104]  E. Dewan,et al.  Sudden narrow temperature‐inversion‐layer formation in ALOHA‐93 as a critical‐layer‐interaction phenomenon , 1998 .

[105]  J. Barnett,et al.  Zonal mean temperature, pressure, zonal wind and geopotential height as functions of latitude , 1990 .

[106]  Guy Brasseur,et al.  Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere , 1984 .

[107]  W. L. Jones,et al.  The Self-Destructing Internal Gravity Wave , 1972 .

[108]  F. Bretherton The propagation of groups of internal gravity waves in a shear flow , 1966 .

[109]  A. Hedin Extension of the MSIS Thermosphere Model into the middle and lower atmosphere , 1991 .

[110]  John M. Wallace,et al.  Stratospheric Connection to Northern Hemisphere Wintertime Weather: Implications for Prediction , 2002 .

[111]  E. Dewan,et al.  Mesospheric bores : The 1993 Airborne Lidar and Observations of Hawaiian Airglow/Airborne Noctilucent Cloud Campaigns , 1998 .

[112]  Raymond G. Roble,et al.  A study of a self-generated stratospheric sudden warming and its mesospheric-lower thermospheric impacts using the coupled TIME-GCM/CCM3 , 2002 .

[113]  U. Langematz,et al.  A note on record‐high temperatures at the northern polar stratopause in winter 1997/98 , 1998 .

[114]  J. Egger Comments on “On the ‘Downward Control’ of Extratropical Diabatic Circulations by Eddy-Induced Mean Zonal Forces” , 1996 .

[115]  A. O'Neill,et al.  The development of narrow baroclinic zones and other small‐scale structure in the stratosphere during simulated major warmings , 1990 .

[116]  J. Salah Variability of winds and temperatures in the lower thermosphere , 1994 .

[117]  K. Hamilton DYNAMICAL COUPLING OF THE LOWER AND MIDDLE ATMOSPHERE : HISTORICAL BACKGROUND TO CURRENT RESEARCH , 1999 .

[118]  M. Alexander,et al.  Interpretations of observed climatological patterns in stratospheric gravity wave variance , 1998 .

[119]  J. Barnett,et al.  Temperature Data from Satellites , 1985 .

[120]  R. Roble,et al.  Local mean state changes due to gravity wave breaking modulated by the diurnal tide , 2000 .

[121]  G. Brasseur,et al.  The Separated Polar Winter Stratopause: A Gravity Wave Driven Climatological Feature , 1989 .

[122]  Alain Hauchecorne,et al.  Climatology and trends of the middle atmospheric temperature (33–87 km) as seen by Rayleigh lidar over the south of France , 1991 .

[123]  A. Carswell,et al.  A detailed record of High Arctic middle atmospheric , 2000 .

[124]  T. Matsuno A Quasi One-Dimensional Model of the Middle Atmosphere Circulation Interacting with Internal Gravity Waves , 1982 .

[125]  P. Braesicke,et al.  On the occurrence and evolution of extremely high temperatures at the polar winter stratopause — A GCM study , 2000 .

[126]  Gravity wave and tidal structures between 60 and 140 km inferred from space shuttle reentry data , 1993 .

[127]  Han L. Liu,et al.  Local heating/cooling of the mesosphere due to gravity wave and tidal coupling , 1998 .