IPCAS: a direct-method-based pipeline from phasing to model building and refinement for macromolecular structure determination

A new version (2.0) of the pipeline IPCAS (Iterative Protein Crystal structure Automatic Solution) has been released, in which the program OASIS performs direct-method single-wavelength anomalous diffraction/single isomorphous replacement phasing and direct-method-aided partial-structure extension. IPCAS incorporates the widely used packages CCP4 and PHENIX for locating heavy atoms, density modification, molecular replacement, model building and refinement. Important extensions to the previous version of IPCAS include a resolution screening method for non-crystallographic symmetry searching, an alternate model-building protocol for avoiding premature convergence and direct-method image processing for electron microscopy maps, including single-particle cryo-EM maps. Moreover, a new graphical user interface is provided for controlling and real-time monitoring of the whole dual-space iterative process, which works as a plugin to CCP4i. Applications of the new IPCAS to difficult cases have yielded promising results, including `direct-method phasing and fragment extension' from weak anomalous diffraction signal data and `direct-method-aided partial-structure extension' from low-homology models.

[1]  Kevin Cowtan,et al.  Recent developments in classical density modification , 2010, Acta crystallographica. Section D, Biological crystallography.

[2]  B. Sha,et al.  Crystal structure of yeast mitochondrial outer membrane translocon member Tom70p , 2006, Nature Structural &Molecular Biology.

[3]  P. Zwart,et al.  Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.

[4]  Victor S Lamzin,et al.  On the combination of molecular replacement and single-wavelength anomalous diffraction phasing for automated structure determination. , 2009, Acta crystallographica. Section D, Biological crystallography.

[5]  G. Sheldrick,et al.  An introduction to experimental phasing of macromolecules illustrated by SHELX; new autotracing features , 2018, Acta crystallographica. Section D, Structural biology.

[6]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[7]  A. McPherson,et al.  Structures of three crystal forms of the sweet protein thaumatin. , 1994, Acta crystallographica. Section D, Biological crystallography.

[8]  W. Cochran Relations between the phases of structure factors , 1955 .

[9]  Randy J. Read,et al.  Electronic Reprint Biological Crystallography Decision-making in Structure Solution Using Bayesian Estimates of Map Quality: the Phenix Autosol Wizard Biological Crystallography Decision-making in Structure Solution Using Bayesian Estimates of Map Quality: the Phenix Autosol Wizard , 2022 .

[10]  S. Cianférani,et al.  Deep Structural Analysis of RPAP3 and PIH1D1, Two Components of the HSP90 Co-chaperone R2TP Complex. , 2018, Structure.

[11]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[12]  Kevin Cowtan,et al.  The Buccaneer software for automated model building. 1. Tracing protein chains. , 2006, Acta crystallographica. Section D, Biological crystallography.

[13]  Peter Briggs,et al.  A graphical user interface to the CCP4 program suite. , 2003, Acta crystallographica. Section D, Biological crystallography.

[14]  R. Poljak,et al.  Hydrogen bonding and solvent structure in an antigen-antibody interface. Crystal structures and thermodynamic characterization of three Fv mutants complexed with lysozyme. , 1996, Biochemistry.

[15]  Tao Zhang,et al.  Applications of direct methods in protein crystallography for dealing with diffraction data down to 5 Å resolution. , 2014, Acta crystallographica. Section A, Foundations and advances.

[16]  Victor S Lamzin,et al.  Auto-rickshaw: an automated crystal structure determination platform as an efficient tool for the validation of an X-ray diffraction experiment. , 2005, Acta crystallographica. Section D, Biological crystallography.

[17]  Wei Ding,et al.  Enhancement of MAD/MIR phasing at low resolution and a new procedure for automatic phase extension , 2019, Chinese Physics B.

[18]  Z. Dauter Estimation of anomalous signal in diffraction data. , 2006, Acta crystallographica. Section D, Biological crystallography.

[19]  T. Terwilliger Finding non-crystallographic symmetry in density maps of macromolecular structures , 2013, Journal of Structural and Functional Genomics.

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[22]  M. Cygler,et al.  A case study on the treatment of protein SIRAS data. , 2014, Acta crystallographica. Section D, Biological crystallography.

[23]  Tao Zhang,et al.  Direct-method SAD phasing of proteins enhanced by the use of intrinsic bimodal phase distributions in the subsequent phase-improvement process. , 2009, Acta crystallographica. Section D, Biological crystallography.

[24]  Hai-fu Fan,et al.  Combining direct methods with isomorphous replacement or anomalous scattering data. III. The incorporation of partial structure information , 1985 .

[25]  Randy J Read,et al.  Exploiting distant homologues for phasing through the generation of compact fragments, local fold refinement and partial solution combination , 2018, Acta crystallographica. Section D, Structural biology.

[26]  Suzanne Fortier,et al.  Direct methods for solving macromolecular structures , 1998 .

[27]  Fei Long,et al.  BALBES: a molecular-replacement pipeline , 2007, Acta crystallographica. Section D, Biological crystallography.

[28]  A. McCoy,et al.  Maximum-likelihood determination of anomalous substructures , 2018, Acta crystallographica. Section D, Structural biology.

[29]  Martyn D. Winn,et al.  Exploring the speed and performance of molecular replacement with AMPLE using QUARK ab initio protein models , 2015, Acta crystallographica. Section D, Biological crystallography.

[30]  Hai-fu Fan,et al.  OASIS: a computer program for breaking phase ambiguity in one-wavelength anomalous scattering or single isomorphous substitution (replacement) data , 2000 .

[31]  Geerten W Vuister,et al.  Structure, dynamics and binding characteristics of the second PDZ domain of PTP-BL. , 2002, Journal of Molecular Biology.

[32]  Randy J. Read,et al.  Improved molecular replacement by density- and energy-guided protein structure optimization , 2011, Nature.

[33]  Randy J. Read,et al.  Dauter Iterative model building , structure refinement and density modification with the PHENIX AutoBuild wizard , 2007 .

[34]  Wei Ding,et al.  Using cryo-electron microscopy maps for X-ray structure determination , 2018, IUCrJ.

[35]  C. Giacovazzo,et al.  Molecular replacement: the approach of the program REMO , 2006 .

[36]  H. Fan,et al.  OASIS and molecular-replacement model completion. , 2007, Acta crystallographica. Section D, Biological crystallography.

[37]  Randy J. Read,et al.  Using SAD data in Phaser , 2011, Acta crystallographica. Section D, Biological crystallography.

[38]  D. Baker,et al.  Computational redesign of protein-protein interaction specificity , 2004, Nature Structural &Molecular Biology.

[39]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[40]  Tao Zhang,et al.  Protein-complex structure completion using IPCAS (Iterative Protein Crystal structure Automatic Solution). , 2015, Acta crystallographica. Section D, Biological crystallography.

[41]  Jan Pieter Abrahams,et al.  CRANK: new methods for automated macromolecular crystal structure solution. , 2004, Structure.

[42]  W. Kabsch A solution for the best rotation to relate two sets of vectors , 1976 .

[43]  Martyn D. Winn,et al.  MrBUMP: an automated pipeline for molecular replacement , 2007, Acta crystallographica. Section D, Biological crystallography.

[44]  J W Wang,et al.  Direct-method SAD phasing with partial-structure iteration: towards automation. , 2004, Acta crystallographica. Section D, Biological crystallography.

[45]  Martin Savko,et al.  SIMBAD: a sequence-independent molecular-replacement pipeline , 2017, Acta crystallographica. Section D, Structural biology.

[46]  Victor S. Lamzin,et al.  Visual automated macromolecular model building , 2013, Acta crystallographica. Section D, Biological crystallography.

[47]  Q. Hao ABS: a program to determine absolute configuration and evaluate anomalous scatterer substructure , 2004 .

[48]  Thomas Terwilliger,et al.  SOLVE and RESOLVE: automated structure solution, density modification and model building. , 2004, Journal of synchrotron radiation.

[49]  Z. Dauter,et al.  Phasing on anomalous signal of sulfurs: what is the limit? , 2003, Acta crystallographica. Section D, Biological crystallography.

[50]  G. A. Sim,et al.  The distribution of phase angles for structures containing heavy atoms. II. A modification of the normal heavy‐atom method for non‐centrosymmetrical structures , 1959 .

[51]  M. Woolfson,et al.  Application of the Ps-function method to macromolecular structure determination , 1989 .

[52]  Sheng Huang,et al.  SAD phasing by OASIS-2004: case studies of dual-space fragment extension. , 2006, Acta crystallographica. Section D, Biological crystallography.