On the Numerical Behavior of Matrix Splitting Iteration Methods for Solving Linear Systems

We study the numerical behavior of stationary one-step or two-step matrix splitting iteration methods for solving large sparse systems of linear equations. We show that inexact solutions of inner linear systems associated with the matrix splittings may considerably influence the accuracy of the approximate solutions computed in finite precision arithmetic. For a general stationary matrix splitting iteration method, we analyze two mathematically equivalent implementations and discuss the conditions when they are componentwise or normwise forward or backward stable. We distinguish two different forms of matrix splitting iteration methods and prove that one of them is significantly more accurate than the other when employing inexact inner solves. The theoretical results are illustrated by numerical experiments with an inexact one-step and an inexact two-step splitting iteration method.

[1]  D. Szyld,et al.  H-Splittings and two-stage iterative methods , 1992 .

[2]  H. Keller,et al.  Analysis of Numerical Methods , 1969 .

[3]  Rounding Errors in Alternating Direction Methods for Parabolic Problems , 1968 .

[4]  Richard S. Varga,et al.  Matrix Iterative Analysis , 2000, The Mathematical Gazette.

[5]  N. Higham,et al.  COMPONENTWISE ERROR ANALYSIS FOR STATIONARY ITERATIVE METHODS , 1993 .

[6]  David M. Young,et al.  Applied Iterative Methods , 2004 .

[7]  Nicholas J. Higham,et al.  Accuracy and stability of numerical algorithms, Second Edition , 2002 .

[8]  Pavel Jiránek,et al.  Maximum Attainable Accuracy of Inexact Saddle Point Solvers , 2007, SIAM J. Matrix Anal. Appl..

[9]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[10]  Gene H. Golub,et al.  Block Triangular and Skew-Hermitian Splitting Methods for Positive-Definite Linear Systems , 2005, SIAM J. Sci. Comput..

[11]  Robert J. Plemmons,et al.  Linear algebra, Markov chains, and queueing models , 1993 .

[12]  Zhong-Zhi Bai,et al.  A class of two‐stage iterative methods for systems of weakly nonlinear equations , 1997, Numerical Algorithms.

[13]  D. Rose,et al.  Convergence of nested classical iterative methods for linear systems , 1990 .

[14]  Gene H. Golub,et al.  Matrix computations , 1983 .

[15]  Zhi-Hao Cao Rounding error analysis of two-stage iterative methods for large linear systems , 2003, Appl. Math. Comput..

[16]  Owe Axelsson,et al.  Real valued iterative methods for solving complex symmetric linear systems , 2000, Numer. Linear Algebra Appl..

[17]  Fang Chen,et al.  Modified HSS iteration methods for a class of complex symmetric linear systems , 2010, Computing.

[19]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[20]  Valeria Simoncini,et al.  Theory of Inexact Krylov Subspace Methods and Applications to Scientific Computing , 2003, SIAM J. Sci. Comput..

[21]  P. Jiránek,et al.  Limiting accuracy of segregated solution methods for nonsymmetric saddle point problems , 2008 .

[22]  Zhong-Zhi Bai On the convergence of additive and multiplicative splitting iterations for systems of linear equations , 2003 .

[23]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[24]  Michele Benzi,et al.  Existence and uniqueness of splittings for stationary iterative methods with applications to alternating methods , 1997 .

[25]  Gerard L. G. Sleijpen,et al.  Inexact Krylov Subspace Methods for Linear Systems , 2004, SIAM J. Matrix Anal. Appl..

[26]  H. H. Rachford,et al.  On the numerical solution of heat conduction problems in two and three space variables , 1956 .

[27]  S. Wu,et al.  A Modified Alternating Direction Method for Positive Definite Systems , 2012 .

[28]  Fang Chen,et al.  On preconditioned MHSS iteration methods for complex symmetric linear systems , 2011, Numerical Algorithms.

[29]  O. Axelsson,et al.  Real valued iterative methods for solving complex symmetric linear systems , 2000 .

[30]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[31]  Nancy Nichols,et al.  On the Convergence of Two-Stage Iterative Processes for Solving Linear Equations , 1973 .

[32]  M. Ng,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..