Code-Aided Turbo Synchronization : Techniques that combine both data detection and synchronization in an iterative way can improve the overall accuracy and performance of the system

The introduction of turbo and low-density parity-check (LDPC) codes with iterative decoding that almost attain Shannon capacity challenges the synchronization subsystems of a data modem. Fast and accurate signal synchronization has to be performed at a much lower value of signal-to-noise ratio (SNR) than in previous less efficiently coded systems. The solution to this issue is developing specific synchronization techniques that take advantage of the presence of the channel code and of the iterative nature of decoding: the so-called turbo-synchronization algorithms. The aim of this paper within this special issue devoted to the turbo principle is twofold: on the one hand, it shows how the many turbo-synchronization algorithms that have already appeared in the literature can be cast into a simple and rigorous theoretical framework. On the other hand, it shows the application of such techniques in a few simple cases, and evaluates improvement that can be obtained from them, especially in the low-SNR regime.

[1]  Costas N. Georghiades,et al.  Frame synchronization for coded systems over AWGN channels , 2004, IEEE Transactions on Communications.

[2]  Giuseppe Caire,et al.  Algorithms for iterative decoding in the presence of strong phase noise , 2005, IEEE Journal on Selected Areas in Communications.

[3]  Justin Dauwels,et al.  Phase estimation by message passing , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[4]  Michael Tüchler,et al.  Performance of soft iterative channel estimation in turbo equalization , 2002, 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333).

[5]  Haige Xiang,et al.  Iterative carrier phase recovery methods in turbo receivers , 2005, IEEE Commun. Lett..

[6]  Marco Luise,et al.  Embedding carrier phase recovery into iterative decoding of turbo-coded linear modulations , 2004, IEEE Transactions on Communications.

[7]  New York Dover,et al.  ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .

[8]  Henk Wymeersch,et al.  True Cramer-Rao bound for timing recovery from a bandlimited linearly Modulated waveform with unknown carrier phase and frequency , 2004, IEEE Transactions on Communications.

[9]  Luc Vandendorpe,et al.  Iterative Synchronization: EM Algorithm Versus Newton-Raphson Method , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[10]  Wayne E. Stark,et al.  Unified design of iterative receivers using factor graphs , 2001, IEEE Trans. Inf. Theory.

[11]  Christian Schlegel,et al.  Differential turbo-coded modulation with APP channel estimation , 2006, IEEE Transactions on Communications.

[12]  Bartosz Mielczarek,et al.  Phase offset estimation using enhanced turbo decoders , 2002, 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333).

[13]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[14]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[15]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[16]  Heidi Steendam,et al.  The Cramer-Rao bound for phase estimation from coded linearly modulated signals , 2003, IEEE Communications Letters.

[17]  Alex J. Grant,et al.  Differential space-time turbo codes , 2003, IEEE Trans. Inf. Theory.

[18]  L. Vandendorpe,et al.  Turbo synchronization: a combined sum-product and expectation-maximization algorithm approach , 2005, IEEE 6th Workshop on Signal Processing Advances in Wireless Communications, 2005..

[19]  Marie-Laure Boucheret,et al.  A carrier phase estimator for multimedia satellite payloads suited to RSC coding schemes , 2000, 2000 IEEE International Conference on Communications. ICC 2000. Global Convergence Through Communications. Conference Record.

[20]  Heidi Steendam,et al.  Carrier and Clock Recovery in (Turbo-) Coded Systems: Cramér-Rao Bound and Synchronizer Performance , 2005, EURASIP J. Adv. Signal Process..

[21]  Luc Vandendorpe,et al.  Frame-Error-Rate-wise Optimal Code-Aided Hypothesis Testing , 2006, 2006 IEEE International Conference on Communications.

[22]  Heinrich Meyr,et al.  Digital communication receivers , 1997 .

[23]  Heinrich Meyr,et al.  Digital filter and square timing recovery , 1988, IEEE Trans. Commun..

[24]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[25]  Henk Wymeersch,et al.  Iterative Code-Aided ML Phase Estimation and Phase Ambiguity Resolution , 2005, EURASIP J. Adv. Signal Process..

[26]  Andrew J. Viterbi,et al.  Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission , 1983, IEEE Trans. Inf. Theory.

[27]  Luc Vandendorpe,et al.  EM algorithm-based multiuser synchronization in turbo receivers , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[28]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[29]  Luc Vandendorpe,et al.  A Theoretical Framework for Iterative Synchronization Based on the Sum–Product and the Expectation-Maximization Algorithms , 2007, IEEE Transactions on Signal Processing.

[30]  S. ten Brink,et al.  Iterative demapping and decoding for multilevel modulation , 1998, IEEE GLOBECOM 1998 (Cat. NO. 98CH36250).

[31]  Achilleas Anastasopoulos,et al.  Polynomial-complexity noncoherent symbol-by-symbol detection with application to adaptive iterative decoding of turbo-like codes , 2003, IEEE Trans. Commun..

[32]  David J. C. MacKay,et al.  Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.

[33]  Robert J. McEliece,et al.  The generalized distributive law , 2000, IEEE Trans. Inf. Theory.

[34]  Luc Vandendorpe,et al.  EM algorithm-based timing synchronization in turbo receivers , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[35]  Heidi Steendam,et al.  The true Cramer-Rao bound for carrier frequency estimation from a PSK signal , 2004, IEEE Transactions on Communications.

[36]  Achilleas Anastasopoulos,et al.  Adaptive iterative detection for phase tracking in turbo-coded systems , 2001, IEEE Trans. Commun..

[37]  Cédric Herzet Code-aided synchronization for digital burst communications , 2006 .

[38]  Tom Heskes,et al.  Approximate Expectation Maximization , 2003, NIPS.

[39]  Umberto Mengali,et al.  The modified Cramer-Rao bound in vector parameter estimation , 1998, IEEE Trans. Commun..

[40]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[41]  Umberto Mengali,et al.  The modified Cramer-Rao bound and its application to synchronization problems , 1994, IEEE Trans. Commun..

[42]  H. Vincent Poor,et al.  Iterative (turbo) soft interference cancellation and decoding for coded CDMA , 1999, IEEE Trans. Commun..

[43]  Marc Moeneclaey,et al.  On the true and the modified Cramer-Rao bounds for the estimation of a scalar parameter in the presence of nuisance parameters , 1998, IEEE Trans. Commun..

[44]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[45]  Luc Vandendorpe,et al.  Turbo synchronization: an EM algorithm interpretation , 2003, IEEE International Conference on Communications, 2003. ICC '03..