Panchromatic engineering for dye-sensitized solar cells

The dye-sensitized mesoscopic solar cell has been intensively investigated as a promising photovoltaic cell. Its ecological and economical fabrication processes make it attractive and credible alternative to conventional photovoltaic systems. In contrast to the latter design, the DSC approach separates tasks of light absorption and charge transport. The primary step of light absorption is performed by a sensitizer anchored to the surface of a wide band gap semiconductor. In order to reach a high conversion efficiency, the first requirement is that the sensitizer should absorb as much as possible of the incoming sunlight. Strategies for achieving panchromatic response in dye-sensitized mesoscopic solar cells are discussed.

[1]  H. Zogg,et al.  CuIn1 − xGaxSe2 photovoltaic devices for tandem solar cell application , 2009 .

[2]  Horst Weller,et al.  Sensitization of highly porous, polycrystalline TiO2 electrodes by quantum sized CdS , 1990 .

[3]  Gary Hodes,et al.  Comparison of Dye-and Semiconductor-Sensitized Porous Nanocrystalline Liquid Junction Solar Cells , 2008 .

[4]  P. Liska,et al.  Acid-Base Equilibria of (2,2'-Bipyridyl-4,4'-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania. , 1999, Inorganic chemistry.

[5]  P. Jessop,et al.  Homogeneous catalytic hydrogenation of supercritical carbon dioxide , 1994, Nature.

[6]  Liyuan Han,et al.  Ruthenium(II) tricarboxyterpyridyl complex with a fluorine-substituted β-diketonato ligand for highly efficient dye-sensitized solar cells , 2005 .

[7]  H. Grassl,et al.  World in transition: towards sustainable energy systems , 2004 .

[8]  A. D. Vos,et al.  Endoreversible thermodynamics of solar energy conversion , 1992 .

[9]  Anders Hagfeldt,et al.  A p-type NiO-based dye-sensitized solar cell with an open-circuit voltage of 0.35 V. , 2009, Angewandte Chemie.

[10]  Michael Grätzel,et al.  Recent advances in sensitized mesoscopic solar cells. , 2009, Accounts of chemical research.

[11]  A. Ehret,et al.  Spectral Sensitization of TiO2 Nanocrystalline Electrodes with Aggregated Cyanine Dyes , 2001 .

[12]  Jianjun He,et al.  Dye-sensitized nanostructured tandem cell-first demonstrated cell with a dye-sensitized photocathode , 2000 .

[13]  Q. Shen,et al.  High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells , 2007 .

[14]  Mohammad Khaja Nazeeruddin Michael Graetzel Festschrift, a tribute for his 60th Birthday , 2004 .

[15]  Hironori Arakawa,et al.  Synthesis of novel beta-diketonate bis(bipyridyl) Os(II) dyes for utilization of infrared light in dye-sensitized solar cells. , 2010, Chemical communications.

[16]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .

[17]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[18]  B. Parkinson Encyclopedia of Electrochemistry. Volume 6. Semiconductor Electrodes and Photoelectrochemistry Edited by Stuart Licht (Israel Institute of Technology, Haifa, Israel). Series Edited by Allen J. Bard and Martin Stratmann. Wiley-VCH: Weinheim. 2002. x + 598 pp. $270.00. ISBN 3-527-30398-7. , 2002 .

[19]  J. Durrant,et al.  Catalysis of recombination and its limitation on open circuit voltage for dye sensitized photovoltaic cells using phthalocyanine dyes. , 2008, Journal of the American Chemical Society.

[20]  Louis E. Brus,et al.  Electronic wave functions in semiconductor clusters: experiment and theory , 1986 .

[21]  Hari Singh Nalwa,et al.  Handbook of nanostructured materials and nanotechnology , 2000 .

[22]  A. Lever,et al.  Novel ruthenium sensitizers containing functionalized hybrid tetradentate ligands: synthesis, characterization, and INDO/S analysis. , 2002, Inorganic chemistry.

[23]  V. Sundström,et al.  Photosynthetic Light-Harvesting Pigment−Protein Complexes: Toward Understanding How and Why , 1996 .

[24]  Wilhelm Warta,et al.  Solar cell efficiency tables (version 30) , 2007 .

[25]  M. Grätzel,et al.  Phosphorescent energy relay dye for improved light harvesting response in liquid dye-sensitized solar cells , 2010 .

[26]  S. Zakeeruddin,et al.  Regenerative PbS and CdS quantum dot sensitized solar cells with a cobalt complex as hole mediator. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[27]  U. Bach,et al.  Highly efficient photocathodes for dye-sensitized tandem solar cells. , 2010, Nature materials.

[28]  Michael Grätzel,et al.  Fabrication and performance of a monolithic dye-sensitized TiO2/Cu(In,Ga)Se2 thin film tandem solar cell , 2009 .

[29]  H. Sugihara,et al.  Synthesis of a new class of cyclometallated ruthenium(II) complexes and their application in dye-sensitized solar cells , 2009 .

[30]  Rocío Bayón,et al.  Nanostructured Photovoltaic Cell of the Type Titanium Dioxide, Cadmium Sulfide Thin Coating, and Copper Thiocyanate Showing High Quantum Efficiency , 2006 .

[31]  Michael Grätzel,et al.  Nanocrystalline dye-sensitized solar cell/copper indium gallium selenide thin-film tandem showing greater than 15% conversion efficiency , 2006 .

[32]  D. Law,et al.  40% efficient metamorphic GaInP∕GaInAs∕Ge multijunction solar cells , 2007 .

[33]  A. Haught,et al.  Physics Considerations of Solar Energy Conversion , 1984 .

[34]  R. Mülhaupt,et al.  A dyadic sensitizer for dye solar cells with high energy-transfer efficiency in the device. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[35]  Jia-Hung Tsai,et al.  Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. , 2009, ACS nano.

[36]  Jun-Ho Yum,et al.  Molecular cosensitization for efficient panchromatic dye-sensitized solar cells. , 2007, Angewandte Chemie.

[37]  K Schulten,et al.  Architecture and mechanism of the light-harvesting apparatus of purple bacteria. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Yun Chi,et al.  Neutral, panchromatic Ru(II) terpyridine sensitizers bearing pyridine pyrazolate chelates with superior DSSC performance. , 2009, Chemical communications.

[39]  Margaret A. K. Ryan,et al.  CdSe‐Sensitized p‐CuSCN/Nanowire n‐ZnO Heterojunctions , 2005 .

[40]  Hironori Arakawa,et al.  Molecular design of ruthenium(II) polypyridyl photosensitizers for efficient nanocrystalline TiO2 solar cells , 2003 .

[41]  R. D. Wright,et al.  Chemical modification of a titanium (IV) oxide electrode to give stable dye sensitisation without a supersensitiser , 1979, Nature.

[42]  U. Jayasooriya,et al.  Phthalocyanines. Properties and applications : Vol. 3. Edited by C. C. Leznoff and A. B. P. Lever. VCH Publishers (1993). 303 pp. Price $81.00. , 1994 .

[43]  M. Graetzel,et al.  Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins , 1993 .

[44]  Y. Yamaguchi,et al.  Ru Dye Uptake under Pressurized CO2 Improvement of Photovoltaic Performances for Dye-Sensitized Solar Cells , 2006 .

[45]  Xiaogang Peng,et al.  Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals , 2003 .

[46]  Yuan Wang,et al.  Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. , 2008, Journal of the American Chemical Society.

[47]  T. Suezaki,et al.  Thin film silicon solar cell and module , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..

[48]  I. Kaiser,et al.  The eta-solar cell with CuInS2: A photovoltaic cell concept using an extremely thin absorber (eta) , 2001 .

[49]  Efficient Panchromatic Sensitization of Nanocrystalline TiO2-based Solar Cells Using 2-Pyridinecarboxylate-substituted Ruthenium(II) Complexes , 2009 .

[50]  Development of multijunction thin film solar cells , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[51]  Michael Grätzel Mesoscopic solar cells for electricity and hydrogen production from sunlight , 2005 .

[52]  A. J. Frank,et al.  Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals. , 2003, Journal of the American Chemical Society.

[53]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[54]  M. Grätzel Corrigendum to “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells” [J. Photochem. Photobiol. A: Chem. 164 (2004) 3–14] , 2004 .

[55]  Anders Hagfeldt,et al.  Phenothiazine derivatives for efficient organic dye-sensitized solar cells. , 2007, Chemical communications.

[56]  Jean M. J. Fréchet,et al.  Increased light harvesting in dye-sensitized solar cells with energy relay dyes , 2009 .

[57]  M. Grätzel,et al.  Dye Dependent Regeneration Dynamics in Dye Sensitized Nanocrystalline Solar Cells: Evidence for the Formation of a Ruthenium Bipyridyl Cation/Iodide Intermediate , 2007 .

[58]  Jianjun He,et al.  Dye-Sensitized Nanostructured p-Type Nickel Oxide Film as a Photocathode for a Solar Cell , 1999 .

[59]  Peng Wang,et al.  Dye-Sensitized Solar Cells with a High Absorptivity Ruthenium Sensitizer Featuring a 2-(Hexylthio)thiophene Conjugated Bipyridine , 2009 .

[60]  Masaki Murayama,et al.  Dye-sensitized solar cell using novel tandem cell structure , 2007 .

[61]  Hironori Arakawa,et al.  Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell , 2004 .

[62]  Anders Hagfeldt,et al.  Light-Induced Redox Reactions in Nanocrystalline Systems , 1995 .

[63]  M. Grätzel Dye-sensitized solar cells , 2003 .

[64]  David Cahen,et al.  Copper sulfide as a light absorber in wet-chemical synthesized extremely thin absorber (ETA) solar cells , 2009 .

[65]  Guido Viscardi,et al.  Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. , 2005, Journal of the American Chemical Society.

[66]  R. Friend,et al.  Dye-sensitized solar cell based on a three-dimensional photonic crystal. , 2010, Nano letters.

[67]  Hironori Arakawa,et al.  Panchromatic sensitization of nanocrystalline TiO2 with cis-Bis(4-carboxy-2-[2'-(4'-carboxypyridyl)]quinoline)bis(thiocyanato-N)ruthenium(II). , 2003, Inorganic chemistry.

[68]  E. Suzuki,et al.  Synthesis of Porous Nickel Oxide Nanofiber , 2005 .

[69]  J. Malherbe,et al.  Thin Solid Films , 2008 .

[70]  Y. Tachibana,et al.  Dye-Sensitized Nanocrystalline TiO2 Solar Cells Based on Ruthenium(II) Phenanthroline Complex Photosensitizers , 2001 .

[71]  Sarmimala Hore,et al.  Scattering spherical voids in nanocrystalline TiO2- enhancement of efficiency in dye-sensitized solar cells. , 2005, Chemical communications.

[72]  Lei Jiang,et al.  Bio-inspired multi-scale structures in dye-sensitized solar cell , 2009 .

[73]  P. R. Hammond,et al.  Laser dye DCM, its spectral properties, synthesis and comparison with other dyes in the red , 1979 .

[74]  W. Lo,et al.  Structure and Bonding , 2005 .

[75]  Michael Grätzel,et al.  Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex , 1997 .

[76]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[77]  Anders Hagfeldt,et al.  A metal-free “black dye” for panchromatic dye-sensitized solar cells , 2009 .

[78]  H. Lee,et al.  Hollow TiO2 Hemispheres Obtained by Colloidal Templating for Application in Dye‐Sensitized Solar Cells , 2008 .

[79]  Michael Grätzel,et al.  Subpicosecond interfacial charge separation in dye-sensitized nanocrystalline titanium dioxide films , 1996 .

[80]  Shane Ardo,et al.  Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. , 2009, Chemical Society reviews.

[81]  Jun-Ho Yum,et al.  CdSe Quantum Dot-Sensitized Solar Cells Exceeding Efficiency 1% at Full-Sun Intensity , 2008 .

[82]  A. Mihi,et al.  Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells. , 2005, The journal of physical chemistry. B.

[83]  T. Krauss,et al.  Fluorescence spectroscopy of single lead sulfide quantum dots. , 2006, Nano letters.

[84]  Klaus Schulten,et al.  How Nature Harvests Sunlight , 1997 .

[85]  M. Lux‐Steiner,et al.  Photoelectrical properties of In(OH)xSy/PbS(O) structures deposited by SILAR on TiO2 , 2006 .

[86]  Christiana Honsberg,et al.  Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method , 2008 .

[87]  P. Liska,et al.  Engineering of efficient panchromatic sensitizers for nanocrystalline TiO(2)-based solar cells. , 2001, Journal of the American Chemical Society.

[88]  D. Nocera Chemistry of personalized solar energy. , 2009, Inorganic chemistry.

[89]  Nam-Gyu Park,et al.  Nano‐embossed Hollow Spherical TiO2 as Bifunctional Material for High‐Efficiency Dye‐Sensitized Solar Cells , 2008 .

[90]  Saif A. Haque,et al.  Charge Recombination Kinetics in Dye-Sensitized Nanocrystalline Titanium Dioxide Films under Externally Applied Bias , 1998 .

[91]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[92]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[93]  Reiko Ogura,et al.  High-performance dye-sensitized solar cell with a multiple dye system , 2009 .

[94]  T. Mallouk,et al.  Coupling of titania inverse opals to nanocrystalline titania layers in dye-sensitized solar cells. , 2008, The journal of physical chemistry. B.

[95]  Nam-Gyu Park,et al.  Selective positioning of organic dyes in a mesoporous inorganic oxide film. , 2009, Nature materials.

[96]  Janelle M. Leger,et al.  Synthesis and utilization of perylene-based n-type small molecules in light-emitting electrochemical cells. , 2008, Chemical communications.

[97]  Assaf Y Anderson,et al.  Structure/function relationships in dyes for solar energy conversion: a two-atom change in dye structure and the mechanism for its effect on cell voltage. , 2009, Journal of the American Chemical Society.

[98]  M. Grätzel,et al.  High excitation transfer efficiency from energy relay dyes in dye-sensitized solar cells. , 2010, Nano letters.

[99]  A. Lever,et al.  Phthalocyanines : properties and applications , 1989 .

[100]  P. Liska,et al.  Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10 , 2008 .

[101]  Th. Dittrich,et al.  Current-voltage characteristics and transport mechanism of solar cells based on ZnO nanorods/In2S3∕CuSCN , 2008 .

[102]  Jun-Ho Yum,et al.  Efficient co-sensitization of nanocrystalline TiO(2) films by organic sensitizers. , 2007, Chemical communications.

[103]  D. Cahen,et al.  Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells , 2006 .

[104]  David R. Klug,et al.  Parameters Influencing Charge Recombination Kinetics in Dye-Sensitized Nanocrystalline Titanium Dioxide Films , 2000 .

[105]  David R. Klug,et al.  Electron injection kinetics for the nanocrystalline TiO2 films sensitised with the dye (Bu4N)2Ru(dcbpyH)2(NCS)2 , 2002 .

[106]  Frank Würthner,et al.  Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures. , 2004, Chemical communications.

[107]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[108]  C. Bignozzi,et al.  Sensitization of nanocrystalline TiO2 with black absorbers based on Os and Ru polypyridine complexes. , 2005, Journal of the American Chemical Society.

[109]  Byung-Ryool Hyun,et al.  Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles. , 2008, ACS nano.

[110]  Hidetoshi Miura,et al.  High‐Efficiency Organic‐Dye‐ Sensitized Solar Cells Controlled by Nanocrystalline‐TiO2 Electrode Thickness , 2006 .

[111]  Jae Kwan Lee,et al.  Molecular engineering of organic sensitizers for solar cell applications. , 2006, Journal of the American Chemical Society.

[112]  G. L. Araújo,et al.  Limiting efficiencies for photovoltaic energy conversion in multigap systems , 1996 .

[113]  J. Fréchet,et al.  Long‐Range Resonant Energy Transfer for Enhanced Exciton Harvesting for Organic Solar Cells , 2007 .

[114]  M. Fischer,et al.  Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. , 2009, Angewandte Chemie.

[115]  Hironori Arakawa,et al.  Series-connected tandem dye-sensitized solar cell for improving efficiency to more than 10% , 2009 .

[116]  Shuzi Hayase,et al.  Dye-sensitized solar cells consisting of dye-bilayer structure stained with two dyes for harvesting light of wide range of wavelength , 2008 .

[117]  Vincenzo Balzani,et al.  The future of energy supply: Challenges and opportunities. , 2007, Angewandte Chemie.

[118]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[119]  Mohammad Khaja Nazeeruddin,et al.  Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes , 1993 .

[120]  N. Park,et al.  Size-dependent scattering efficiency in dye-sensitized solar cell , 2008 .

[121]  H. Sugihara,et al.  Near-IR sensitization of nanocrystalline TiO2 with a new ruthenium complex having a 2,6-bis(4-carboxyquinolin-2-yl)pyridine ligand , 2009 .

[122]  Charles Howard Henry,et al.  Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells , 1980 .

[123]  Thomas Geiger,et al.  Efficient far red sensitization of nanocrystalline TiO2 films by an unsymmetrical squaraine dye. , 2007, Journal of the American Chemical Society.

[124]  Xuesong Wang,et al.  Study on squarylium cyanine dyes for photoelectric conversion , 1999 .

[125]  C. Kelch,et al.  Contacts to a solar cell with extremely thin CdTe absorber , 2001 .

[126]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[127]  Ashraful Islam,et al.  Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1% , 2006 .

[128]  Masaru Kuno,et al.  Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. , 2007, Journal of the American Chemical Society.

[129]  H. Smit,et al.  Influence of scattering layers on efficiency of dye-sensitized solar cells , 2006 .

[130]  R. Haag,et al.  Donor-acceptor-functionalized polymers for efficient light harvesting in the dye solar cell , 2009 .

[131]  Frank Nüesch,et al.  Panchromatic response in solid-state dye-sensitized solar cells containing phosphorescent energy relay dyes. , 2009, Angewandte Chemie.

[132]  Yoshihiro Yamaguchi,et al.  Tandem Dye-Sensitized Solar Cells Fabricated on Glass Rod without Transparent Conductive Layers , 2009 .

[133]  Vincenzo Balzani,et al.  Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence , 1988 .

[134]  G. Boschloo,et al.  Porous One‐Dimensional Photonic Crystals Improve the Power‐Conversion Efficiency of Dye‐Sensitized Solar Cells , 2009 .

[135]  Robert W. Birkmire,et al.  POLYCRYSTALLINE THIN FILM SOLAR CELLS:Present Status and Future Potential , 1997 .

[136]  E. Blart,et al.  New photovoltaic devices based on the sensitization of p-type semiconductors: challenges and opportunities. , 2010, Accounts of chemical research.

[137]  T. Moore,et al.  Solar fuels via artificial photosynthesis. , 2009, Accounts of chemical research.

[138]  Craig A Grimes,et al.  High-efficiency Förster resonance energy transfer in solid-state dye sensitized solar cells. , 2010, Nano letters.

[139]  T. Mallouk,et al.  Increasing the conversion efficiency of dye-sensitized TiO2 photoelectrochemical cells by coupling to photonic crystals. , 2005, The journal of physical chemistry. B.