Quantization of probability distributions under norm-based distortion measures

Summury For a probability measure P on Rd and n ∊ N consider en = inf ∫ mina∊αV(||x − a||)dP(x) where the infimum is taken over all subsets α of Rd with card(α) ≤ n and V is a nondecreasing function. Under certain conditions on V, we derive the precise n-asymptotics of en for nonsingular distributions P and we find the asymptotic performance of optimal quantizers using weighted empirical measures.

[1]  P. Zador DEVELOPMENT AND EVALUATION OF PROCEDURES FOR QUANTIZING MULTIVARIATE DISTRIBUTIONS , 1963 .

[2]  D. McClure Nonlinear segmented function approximation and analysis of line patterns , 1975 .

[3]  Alexander V. Trushkin Sufficient conditions for uniqueness of a locally optimal quantizer for a class of convex error weighting functions , 1982, IEEE Trans. Inf. Theory.

[4]  Gary L. Wise,et al.  On the existence of optimal quantizers , 1982, IEEE Trans. Inf. Theory.

[5]  James A. Bucklew,et al.  Multidimensional asymptotic quantization theory with r th power distortion measures , 1982, IEEE Trans. Inf. Theory.

[6]  Paul L. Zador,et al.  Asymptotic quantization error of continuous signals and the quantization dimension , 1982, IEEE Trans. Inf. Theory.

[7]  JOHN C. KIEFFER,et al.  Uniqueness of locally optimal quantizer for log-concave density and convex error weighting function , 1983, IEEE Trans. Inf. Theory.

[8]  James A. Bucklew,et al.  Two results on the asymptotic performance of quantizers , 1984, IEEE Trans. Inf. Theory.

[9]  Gary L. Wise,et al.  Some remarks on the existence of optimal quantizers , 1984 .

[10]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[11]  Gilles Pagès Voronoï tesselation, space quantization algorithms and numerical integration , 1993, ESANN.

[12]  Bhaskar D. Rao,et al.  Theoretical analysis of the high-rate vector quantization of LPC parameters , 1995, IEEE Trans. Speech Audio Process..

[13]  Gilles Pagès,et al.  On the critical points of the 1-dimensional competitive learning vector quantization algorithm , 1996, ESANN.

[14]  Gillis Pagés,et al.  A space quantization method for numerical integration , 1998 .

[15]  Robert M. Gray,et al.  Asymptotic Performance of Vector Quantizers with a Perceptual Distortion Measure , 1997, IEEE Trans. Inf. Theory.

[16]  Tamás Linder,et al.  High-Resolution Source Coding for Non-Difference Distortion Measures: Multidimensional Companding , 1999, IEEE Trans. Inf. Theory.

[17]  S. Graf,et al.  Foundations of Quantization for Probability Distributions , 2000 .

[18]  Optimale Quantisierung , 2002 .

[19]  Harald Luschgy,et al.  Rates of convergence for the empirical quantization error , 2002 .

[20]  Harald Luschgy,et al.  Quantization for probability measures with respect to the geometric mean error , 2004, Mathematical Proceedings of the Cambridge Philosophical Society.

[21]  Gilles Pagès,et al.  Local Distortion and μ-Mass of the Cells of One Dimensional Asymptotically Optimal Quantizers , 2004 .

[22]  Svetlozar T. Rachev,et al.  Handbook of computational and numerical methods in finance , 2004 .

[23]  P. Gruber,et al.  Optimum Quantization and Its Applications , 2004 .

[24]  S. Graf,et al.  The point density measure in the quantization of self-similar probabilities , 2005, Mathematical Proceedings of the Cambridge Philosophical Society.