Locally discriminative topic modeling

Topic modeling is a powerful tool for discovering the underlying or hidden structure in text corpora. Typical algorithms for topic modeling include probabilistic latent semantic analysis (PLSA) and latent Dirichlet allocation (LDA). Despite their different inspirations, both approaches are instances of generative model, whereas the discriminative structure of the documents is ignored. In this paper, we propose locally discriminative topic model (LDTM), a novel topic modeling approach which considers both generative and discriminative structures of the data space. Different from PLSA and LDA in which the topic distribution of a document is dependent on all the other documents, LDTM takes a local perspective that the topic distribution of each document is strongly dependent on its neighbors. By modeling the local relationships of documents within each neighborhood via a local linear model, we learn topic distributions that vary smoothly along the geodesics of the data manifold, and can better capture the discriminative structure in the data. The experimental results on text clustering and web page categorization demonstrate the effectiveness of our proposed approach.

[1]  David M. Blei,et al.  Relational Topic Models for Document Networks , 2009, AISTATS.

[2]  Deng Cai,et al.  Probabilistic dyadic data analysis with local and global consistency , 2009, ICML '09.

[3]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[4]  Léon Bottou,et al.  Local Learning Algorithms , 1992, Neural Computation.

[5]  Xin Liu,et al.  Document clustering based on non-negative matrix factorization , 2003, SIGIR.

[6]  Bernhard Schölkopf,et al.  A Local Learning Approach for Clustering , 2006, NIPS.

[7]  Nathaniel E. Helwig,et al.  An Introduction to Linear Algebra , 2006 .

[8]  Yi Wu,et al.  Stable local dimensionality reduction approaches , 2009, Pattern Recognit..

[9]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[10]  Jiawei Han,et al.  Modeling hidden topics on document manifold , 2008, CIKM '08.

[11]  Xiaofei He,et al.  Locality Preserving Projections , 2003, NIPS.

[12]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[13]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[14]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[15]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[16]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[17]  Bir Bhanu,et al.  Local discriminative learning for pattern recognition , 2001, Pattern Recognit..

[18]  Steffen Bickel,et al.  Unsupervised prediction of citation influences , 2007, ICML '07.

[19]  Yi Yang,et al.  Ranking with local regression and global alignment for cross media retrieval , 2009, ACM Multimedia.

[20]  Tommy W. S. Chow,et al.  A new dual wing harmonium model for document retrieval , 2009, Pattern Recognit..

[21]  Michael I. Jordan,et al.  On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes , 2001, NIPS.

[22]  Fei Wang,et al.  A general learning framework using local and global regularization , 2010, Pattern Recognit..

[23]  Yan Liu,et al.  Topic-link LDA: joint models of topic and author community , 2009, ICML '09.

[24]  Thomas Hofmann,et al.  Unsupervised Learning by Probabilistic Latent Semantic Analysis , 2004, Machine Learning.

[25]  Yong Wang,et al.  Combining global, regional and contextual features for automatic image annotation , 2009, Pattern Recognit..

[26]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[27]  Thomas L. Griffiths,et al.  Probabilistic author-topic models for information discovery , 2004, KDD.

[28]  Ramesh Nallapati,et al.  Joint latent topic models for text and citations , 2008, KDD.

[29]  Deng Cai,et al.  Topic modeling with network regularization , 2008, WWW.

[30]  Tom Minka,et al.  Principled Hybrids of Generative and Discriminative Models , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[31]  Andrew Zisserman,et al.  Scene Classification Using a Hybrid Generative/Discriminative Approach , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[33]  Chong Wang,et al.  Reading Tea Leaves: How Humans Interpret Topic Models , 2009, NIPS.

[34]  Mikhail Belkin,et al.  Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.

[35]  Hans C. van Houwelingen,et al.  The Elements of Statistical Learning, Data Mining, Inference, and Prediction. Trevor Hastie, Robert Tibshirani and Jerome Friedman, Springer, New York, 2001. No. of pages: xvi+533. ISBN 0‐387‐95284‐5 , 2004 .

[36]  Naonori Ueda,et al.  Semisupervised Learning for a Hybrid Generative/Discriminative Classifier based on the Maximum Entropy Principle , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[38]  Thomas L. Griffiths,et al.  Probabilistic Topic Models , 2007 .

[39]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[40]  Andrew McCallum,et al.  Topics over time: a non-Markov continuous-time model of topical trends , 2006, KDD '06.

[41]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .