Injective (Δ + 1)-coloring of planar graphs with girth 6

A vertex coloring of a graph G is called injective if every two vertices joined by a path of length 2 get different colors. The minimum number χi(G) of the colors required for an injective coloring of a graph G is clearly not less than the maximum degree Δ(G) of G. There exist planar graphs with girth g ≥ 6 and χi = Δ+1 for any Δ ≥ 2. We prove that every planar graph with Δ ≥ 18 and g ≥ 6 has χi ≤ Δ + 1.

[1]  Oleg V. Borodin,et al.  List 2-distance (Δ + 2)-coloring of planar graphs with girth 6 and Δ ≥ 24 , 2009 .

[2]  Daniel W. Cranston,et al.  Injective colorings of sparse graphs , 2010, Discret. Math..

[3]  Oleg V. Borodin,et al.  2-distance coloring of sparse planar graphs. , 2004 .

[4]  Martin Tancer,et al.  Injective colorings of planar graphs with few colors , 2009, Discret. Math..

[5]  Anna O. Ivanova,et al.  List 2-distance (Δ + 1)-coloring of planar graphs with girth at least 7 , 2011 .

[6]  Oleg V. Borodin,et al.  2-distance (Delta+2)-coloring of planar graphs with girth six and Delta>=18 , 2009, Discret. Math..

[7]  Oleg V. Borodin,et al.  Sufficient conditions for the minimum 2-distance colorability of plane graphs of girth 6. , 2006 .

[8]  G. Wegner Graphs with given diameter and a coloring problem , 1977 .

[9]  Mohammad R. Salavatipour,et al.  Frequency Channel Assignment on Planar Networks , 2002, ESA.

[10]  Oleg V. Borodin,et al.  List 2-distance (Delta+2)-coloring of planar graphs with girth six , 2009, Eur. J. Comb..

[11]  Daniel Král,et al.  Coloring squares of planar graphs with girth six , 2008, Eur. J. Comb..

[12]  André Raspaud,et al.  Injective coloring of planar graphs , 2009, Discret. Appl. Math..

[13]  Mohammad R. Salavatipour,et al.  A bound on the chromatic number of the square of a planar graph , 2005, J. Comb. Theory, Ser. B.

[14]  Oleg V. Borodin,et al.  Sufficient conditions for planar graphs to be 2-distance ()-colourable. , 2004 .

[15]  Magnús M. Halldórsson,et al.  Coloring powers of planar graphs , 2000, SODA '00.

[16]  Jan Kratochvíl,et al.  On the injective chromatic number of graphs , 2002, Discret. Math..