Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin.

Satellite DNAs (tandemly repeated, non-coding DNA sequences) stretch over almost all native centromeres and surrounding pericentromeric heterochromatin. Once considered as inert by-products of genome dynamics in heterochromatic regions, recent studies showed that satellite DNA evolution is interplay of stochastic events and selective pressure. This points to a functional significance of satellite sequences, which in (peri)centromeres may play some fundamental functional roles. First, specific interactions with DNA-binding proteins are proposed to complement sequence-independent epigenetic processes. The second role is achieved through RNAi mechanism, in which transcripts of satellite sequences initialize heterochromatin formation. In addition, satellite DNAs in (peri)centromeric regions affect chromosomal dynamics and genome plasticity. Paradoxically, while centromeric function is conserved through eukaryotes, the profile of satellite DNAs in this region is almost always species-specific. We argue that tandem repeats may be advantageous forms of DNA sequences in (peri)centromeres due to concerted evolution, which maintains high intra-array and intrapopulation sequence homogeneity of satellite arrays, while allowing rapid changes in nucleotide sequence and/or composition of satellite repeats. This feature may be crucial for long-term stability of DNA-protein interactions in centromeric regions.

[1]  A. Luchetti,et al.  Genomic dynamics of a low-copy-number satellite DNA family in Leptestheria dahalacensis (Crustacea, Branchiopoda, Conchostraca). , 2004, Gene.

[2]  O. Cuvier,et al.  Displacement of D1, HP1 and topoisomerase II from satellite heterochromatin by a specific polyamide , 2006, The EMBO journal.

[3]  K. Choo,et al.  Centromere on the move. , 2001, Genome research.

[4]  R. Martienssen,et al.  Maintenance of heterochromatin by RNA interference of tandem repeats , 2003, Nature Genetics.

[5]  R. Matyášek,et al.  Transcription activity of rRNA genes correlates with a tendency towards intergenomic homogenization in Nicotiana allotetraploids. , 2007, The New phytologist.

[6]  M. Plohl,et al.  Similarity of Structural Features and Evolution of Satellite DNAs from Palorus subdepressus (Coleoptera) and Related Species , 1998, Journal of Molecular Evolution.

[7]  K. Bloom Centromere dynamics. , 2007, Current opinion in genetics & development.

[8]  B. Mantovani,et al.  Non-concerted evolution of the RET76 satellite DNA family in Reticulitermes taxa (Insecta, Isoptera) , 2006, Genetica.

[9]  R. Martienssen,et al.  RNA interference and heterochromatin in the fission yeast Schizosaccharomyces pombe. , 2005, Trends in genetics : TIG.

[10]  W. Stephan,et al.  Evidence of gene conversion associated with a selective sweep in Drosophila melanogaster. , 2006, Molecular biology and evolution.

[11]  R Cedergren,et al.  Hammerhead-mediated processing of satellite pDo500 family transcripts from Dolichopoda cave crickets. , 2000, Nucleic acids research.

[12]  C. Slamovits,et al.  Sequence evolution of the major satellite DNA of the genus Ctenomys (Octodontidae, Rodentia). , 2007, Gene.

[13]  Jiming Jiang,et al.  Transcription and evolutionary dynamics of the centromeric satellite repeat CentO in rice. , 2006, Molecular biology and evolution.

[14]  Gary H Karpen,et al.  Sequence analysis of a functional Drosophila centromere. , 2003, Genome research.

[15]  B. Zhivotovsky,et al.  Constitutive expression of the human peroxiredoxin V gene contributes to protection of the genome from oxidative DNA lesions and to suppression of transcription of noncoding DNA , 2006, The FEBS journal.

[16]  S. Henikoff,et al.  The Centromere Paradox: Stable Inheritance with Rapidly Evolving DNA , 2001, Science.

[17]  Huntington F Willard,et al.  The evolutionary dynamics of alpha-satellite. , 2005, Genome research.

[18]  J. Elder,et al.  Concerted Evolution of Repetitive DNA Sequences in Eukaryotes , 1995, The Quarterly Review of Biology.

[19]  D. Preuss,et al.  Centromere satellites from Arabidopsis populations: maintenance of conserved and variable domains. , 2003, Genome research.

[20]  W. Doolittle,et al.  Selfish genes, the phenotype paradigm and genome evolution , 1980, Nature.

[21]  Madhu Tiwari,et al.  Chromosomal localization, copy number assessment, and transcriptional status of BamHI repeat fractions in water buffalo Bubalus bubalis. , 2006, DNA and cell biology.

[22]  L. Bachmann,et al.  Evolutionary dynamics of the SGM transposon family in the Drosophila obscura species group. , 2000, Molecular biology and evolution.

[23]  H. Willard,et al.  Genomic analysis of sequence variation in tandemly repeated DNA. Evidence for localized homogeneous sequence domains within arrays of alpha-satellite DNA. , 1990, Journal of molecular biology.

[24]  G. Dover Molecular drive in multigene families: How biological novelties arise, spread and are assimilated , 1986 .

[25]  P. Dollé,et al.  Transcripts from opposite strands of γ satellite DNA are differentially expressed during mouse development , 1995, Mammalian Genome.

[26]  G. P. Smith,et al.  Evolution of repeated DNA sequences by unequal crossover. , 1976, Science.

[27]  L. Bachmann,et al.  The pvB370 BamHI satellite DNA family of the Drosophila virilis group and its evolutionary relation to mobile dispersed genetic pDv elements , 1995, Journal of Molecular Evolution.

[28]  I. Alexandrov,et al.  Unequal cross‐over is involved in human alpha satellite DNA rearrangements on a border of the satellite domain , 1998, FEBS letters.

[29]  Evan E. Eichler,et al.  An assessment of the sequence gaps: Unfinished business in a finished human genome , 2004, Nature Reviews Genetics.

[30]  S. Ohno,et al.  So much "junk" DNA in our genome. , 1972, Brookhaven symposia in biology.

[31]  Jiming Jiang,et al.  Sobo, a Recently Amplified Satellite Repeat of Potato, and Its Implications for the Origin of Tandemly Repeated Sequences , 2005, Genetics.

[32]  Huntington F Willard,et al.  Progressive proximal expansion of the primate X chromosome centromere. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[33]  M. Plohl,et al.  Sequence divergence and conservation in organizationally distinct subfamilies of Donax trunculus satellite DNA. , 2005, Gene.

[34]  H. Willard,et al.  Rapid creation of BAC-based human artifical chromosome vectors by transposition with synthetic alpha-satellite arrays , 2005, Nucleic acids research.

[35]  C. Topp,et al.  Centromeric Retroelements and Satellites Interact with Maize Kinetochore Protein CENH3 , 2002, The Plant Cell Online.

[36]  W Stephan,et al.  Possible role of natural selection in the formation of tandem-repetitive noncoding DNA. , 1994, Genetics.

[37]  G. Drouin Chromatin diminution in the copepod Mesocyclops edax: diminution of tandemly repeated DNA families from somatic cells. , 2006, Genome.

[38]  W. Stephan Recombination and the evolution of satellite DNA. , 1986, Genetical research.

[39]  C. Desel,et al.  The large-scale organization of the centromeric region in Beta species. , 2001, Genome research.

[40]  E. Winzeler,et al.  Genomic and Genetic Definition of a Functional Human Centromere , 2001, Science.

[41]  S. Henikoff,et al.  Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. , 2003, Genetics.

[42]  S. Henikoff,et al.  Adaptive evolution of Cid, a centromere-specific histone in Drosophila. , 2001, Genetics.

[43]  P. Jeffrey,et al.  Regulation of Heterochromatic Silencing and Histone H 3 Lysine-9 Methylation by RNAi , 2002 .

[44]  H. Masumoto,et al.  The role of CENP-B and α-satellite DNA: de novo assembly and epigenetic maintenance of human centromeres , 2004, Chromosome Research.

[45]  M. P. Cummings,et al.  Satellite DNA repeat sequence variation is low in three species of burying beetles in the genus Nicrophorus (Coleoptera: Silphidae). , 1997, Molecular biology and evolution.

[46]  Ira M. Hall,et al.  Regulation of Heterochromatic Silencing and Histone H3 Lysine-9 Methylation by RNAi , 2002, Science.

[47]  H. Scherthan,et al.  Characterization of ancestral chromosome fusion points in the Indian muntjac deer , 2004, Chromosoma.

[48]  Contiguous arrays of satellites 1, 3, and beta form a 1.5-Mb domain on chromosome 22p. , 1997, Genomics.

[49]  M. Plohl,et al.  Variation in satellite DNA profiles—causes and effects , 2002, The EMBO journal.

[50]  A. Shatrova,et al.  Evidence for the existence of satellite DNA‐containing connection between metaphase chromosomes , 2007, Journal of cellular biochemistry.

[51]  Wolfgang Stephan,et al.  The evolutionary dynamics of repetitive DNA in eukaryotes , 1994, Nature.

[52]  Ú. Árnason,et al.  Mysticete (baleen whale) relationships based upon the sequence of the common cetacean DNA satellite. , 1992, Molecular biology and evolution.

[53]  Gary H. Karpen,et al.  Determining centromere identity: cyclical stories and forking paths , 2001, Nature Reviews Genetics.

[54]  F. Rouleux-Bonnin,et al.  Genomic organization and transcription of satellite DNA in the ant Aphaenogaster subterranea (Hymenoptera, Formicidae). , 2002, Genome.

[55]  S. Henikoff,et al.  Centromeric chromatin: what makes it unique? , 2005, Current opinion in genetics & development.

[56]  M. Ferguson-Smith,et al.  High-resolution organization of mouse centromeric and pericentromeric DNA , 2006, Cytogenetic and Genome Research.

[57]  M. Garrido-Ramos,et al.  Evolution of centromeric satellite DNA and its use in phylogenetic studies of the Sparidae family (Pisces, Perciformes). , 1999, Molecular phylogenetics and evolution.

[58]  S. Jackson,et al.  Retrotransposon accumulation and satellite amplification mediated by segmental duplication facilitate centromere expansion in rice. , 2005, Genome research.

[59]  M. Plohl,et al.  Conserved patterns in the evolution of Tribolium satellite DNAs. , 2004, Gene.

[60]  F. Crick,et al.  Selfish DNA: the ultimate parasite , 1980, Nature.

[61]  A. Tinaut,et al.  Evolutionary dynamics of satellite DNA in species of the Genus Formica (Hymenoptera, Formicidae). , 2004, Gene.

[62]  F. Müller,et al.  Chromatin diminution leads to rapid evolutionary changes in the organization of the germ line genomes of the parasitic nematodes A. suum and P. univalens. , 2004, Molecular and biochemical parasitology.

[63]  H. Masumoto,et al.  Distribution of CENP-B boxes reflected in CREST centromere antigenic sites on long-range alpha-satellite DNA arrays of human chromosome 21. , 1994, Human molecular genetics.

[64]  M. Plohl,et al.  Sequence of PRAT Satellite DNA ``Frozen'' in Some Coleopteran Species , 2002, Journal of Molecular Evolution.

[65]  M. Rocchi,et al.  Molecular structure and evolution of DNA sequences located at the alpha satellite boundary of chromosome 20. , 2000, Gene.

[66]  T. Cavalier-smith,et al.  Selfish DNA and the origin of introns , 1985, Nature.

[67]  A. Ludwig,et al.  Evolution of ancient satellite DNAs in sturgeon genomes. , 2004, Gene.

[68]  E. Bastos,et al.  Amplification of the major satellite DNA family (FA-SAT) in a cat fibrosarcoma might be related to chromosomal instability. , 2006, The Journal of heredity.

[69]  K. Choo,et al.  Mouse telocentric sequences reveal a high rate of homogenization and possible role in Robertsonian translocation. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[70]  D. Schindelhauer,et al.  Evidence for a fast, intrachromosomal conversion mechanism from mapping of nucleotide variants within a homogeneous alpha-satellite DNA array. , 2002, Genome research.

[71]  M. Oshimura,et al.  Dicer is essential for formation of the heterochromatin structure in vertebrate cells , 2004, Nature Cell Biology.

[72]  R. Flavell,et al.  Molecular coevolution: DNA divergence and the maintenance of function , 1984, Cell.

[73]  K. Keith,et al.  The rapidly evolving field of plant centromeres. , 2004, Current opinion in plant biology.

[74]  P. Dimitri,et al.  Cis-effects of heterochromatin on heterochromatic and euchromatic gene activity in Drosophila melanogaster. , 1995, Genetics.

[75]  M. V. Vol’kenshtein [Molecular drive]. , 1990, Molekuliarnaia biologiia.

[76]  S. Grewal,et al.  Transcription and RNA interference in the formation of heterochromatin , 2007, Nature.

[77]  M. Baron,et al.  Concerted Evolution Within the Drosophila dumpy Gene , 2007, Genetics.

[78]  J. Jurka,et al.  L1 repeat is a basic unit of heterochromatin satellites in cetaceans. , 1998, Molecular biology and evolution.

[79]  H. Willard,et al.  Pulsed-field gel analysis of alpha-satellite DNA at the human X chromosome centromere: high-frequency polymorphisms and array size estimate. , 1990, Genomics.

[80]  Evolution of low-copy number and major satellite DNA sequences coexisting in two Pimelia species-groups (Coleoptera). , 2003, Gene.

[81]  J. S. Heslop-Harrison,et al.  Molecular diversification of tandemly organized DNA sequences and heterochromatic chromosome regions in some triticeae species , 1996, Chromosome Research.

[82]  Mari Nakamura,et al.  Composition and Structure of the Centromeric Region of Rice Chromosome 8 , 2004, The Plant Cell Online.

[83]  A. Fisher,et al.  Epigenetic aspects of differentiation , 2004, Journal of Cell Science.

[84]  E. Eichler,et al.  Chromosome evolution in eukaryotes: a multi-kingdom perspective. , 2005, Trends in genetics : TIG.

[85]  G. Karpen,et al.  Position-effect variegation and the new biology of heterochromatin. , 1994, Current opinion in genetics & development.

[86]  C. Coutelle,et al.  Contiguous Arrays of Satellites 1, 3, and β Form a 1.5-Mb Domain on Chromosome 22p , 1997 .

[87]  H. Willard,et al.  Patterns of intra- and interarray sequence variation in alpha satellite from the human X chromosome: evidence for short-range homogenization of tandemly repeated DNA sequences. , 1989, Genomics.

[88]  M. Maden Biolistics: The retinoic acid supergun affair , 1994, Current Biology.

[89]  G. Karpen,et al.  Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin , 2004, Nature Structural &Molecular Biology.

[90]  M. Plohl,et al.  Evolution of satellite DNAs from the genus Palorus--experimental evidence for the "library" hypothesis. , 1998, Molecular biology and evolution.

[91]  S. Henikoff,et al.  Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[92]  S. Henikoff,et al.  Adaptive evolution of centromere proteins in plants and animals , 2004, Journal of biology.

[93]  D. Franjević,et al.  Long Inversely Oriented Subunits Form a Complex Monomer of Triboliumbrevicornis Satellite DNA , 2004, Journal of Molecular Evolution.

[94]  P. Castagnone-Sereno,et al.  High conservation of the differentially amplified MPA2 satellite DNA family in parthenogenetic root-knot nematodes. , 2006, Gene.

[95]  W. Jin,et al.  Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[96]  H. Kotani,et al.  The size and sequence organization of the centromeric region of arabidopsis thaliana chromosome 5. , 2000, DNA research : an international journal for rapid publication of reports on genes and genomes.

[97]  J. S. Heslop-Harrison,et al.  Genomes, genes and junk: the large-scale organization of plant chromosomes , 1998 .

[98]  H. Bünemann,et al.  Molecular Aspects of Intron Evolution in Dynein Encoding Mega-Genes on The Heterochromatic Y Chromosome of Drosophila sp. , 2004, Genetica.

[99]  P. Castagnone-Sereno,et al.  Interplay of selective pressure and stochastic events directs evolution of the MEL172 satellite DNA library in root-knot nematodes. , 2006, Molecular biology and evolution.

[100]  E. Frise,et al.  Sequence Finishing and Mapping of Drosophila melanogaster Heterochromatin , 2007, Science.

[101]  H. Kasinsky,et al.  Meiotic chromatin diminution in a vertebrate, the holocephalan fish Hydrolagus collie (Chondrichthyes, Holocephali). , 1984, Tissue & cell.

[102]  S Henikoff,et al.  Something from nothing: the evolution and utility of satellite repeats. , 1998, Trends in genetics : TIG.

[103]  W. Szybalski [124] Use of cesium sulfate for equilibrium density gradient centrifugation☆ , 1968 .

[104]  G. Roizes Human centromeric alphoid domains are periodically homogenized so that they vary substantially between homologues. Mechanism and implications for centromere functioning , 2006, Nucleic acids research.

[105]  T. Ohta,et al.  The cohesive population genetics of molecular drive. , 1984, Genetics.

[106]  T. Ryan Gregory,et al.  Eukaryotic genome size databases , 2006, Nucleic Acids Res..

[107]  W. Modi,et al.  Concerted Evolution and Higher-Order Repeat Structure of the 1.709 (Satellite IV) Family in Bovids , 2004, Journal of Molecular Evolution.

[108]  G. Dover DNA turnover and the molecular clock , 2005, Journal of Molecular Evolution.

[109]  Sonja Durajlija Zinic,et al.  A Novel Interspersed Type of Organization of Satellite DNAs in Tribolium Madens Heterochromatin , 2004, Chromosome Research.

[110]  W. Stephan Tandem-repetitive noncoding DNA: forms and forces. , 1989, Molecular biology and evolution.

[111]  P. Abad,et al.  Conserved and variable domains in satellite DNAs of mitotic parthenogenetic root-knot nematode species. , 2005, Gene.

[112]  Molecular drive. , 2002, Science.

[113]  T. Strachan,et al.  Transition stages of molecular drive in multiple‐copy DNA families in Drosophila , 1985, The EMBO journal.

[114]  J N Anderson,et al.  Conserved patterns of bending in satellite and nucleosome positioning DNA. , 1994, The Journal of biological chemistry.

[115]  J. Werren,et al.  Evolution of Tandemly Repeated Sequences: What Happens at the End of an Array? , 1999, Journal of Molecular Evolution.

[116]  M. Cardone,et al.  Evolution of beta satellite DNA sequences: evidence for duplication-mediated repeat amplification and spreading. , 2004, Molecular biology and evolution.

[117]  L. Bachmann,et al.  Gradual evolution of a specific satellite DNA family in Drosophila ambigua, D. tristis, and D. obscura. , 1993, Molecular biology and evolution.

[118]  Y. Bigot,et al.  Heterochromatin condensation and evolution of unique satellite-DNA families in two parasitic wasp species: Diadromus pulchellus and Eupelmus vuilleti (Hymenoptera). , 1990, Molecular biology and evolution.

[119]  C. Mungall,et al.  The Release 5.1 Annotation of Drosophila melanogaster Heterochromatin , 2007, Science.

[120]  S. Henikoff,et al.  Centromeres put epigenetics in the driver's seat. , 2006, Trends in biochemical sciences.

[121]  G. Dover,et al.  Molecular drive: a cohesive mode of species evolution , 1982, Nature.

[122]  Jiming Jiang,et al.  Rice as a model for centromere and heterochromatin research , 2007, Chromosome Research.

[123]  B. Mantovani Satellite sequence turnover in parthenogenetic systems: the apomictic triploid hybrid Bacillus lynceorum (Insecta, Phasmatodea). , 1998, Molecular biology and evolution.

[124]  T. Kakutani,et al.  Ecotype-specific and chromosome-specific expansion of variant centromeric satellites in Arabidopsis thaliana , 2006, Molecular Genetics and Genomics.

[125]  F. Azorín,et al.  Satellite DNAs contain sequences that induced curvature. , 1990, Biochemistry.

[126]  H. Willard,et al.  Physical and genetic mapping of the human X chromosome centromere: repression of recombination. , 1998, Genome research.

[127]  B John,et al.  Functional aspects of satellite DNA and heterochromatin. , 1979, International review of cytology.

[128]  F. Blattner,et al.  Functional Rice Centromeres Are Marked by a Satellite Repeat and a Centromere-Specific Retrotransposon Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.003079. , 2002, The Plant Cell Online.

[129]  D. M. Skinner,et al.  Cytoplasmic localization of transcripts of a complex G+C-rich crab satellite DNA , 1994, Chromosoma.

[130]  C. Topp,et al.  Centromere-encoded RNAs are integral components of the maize kinetochore. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[131]  T. Schwarzacher,et al.  Tandemly repeated DNA sequences and centromeric chromosomal regions of Arabidopsis species , 2004, Chromosome Research.

[132]  W. Salser,et al.  Nucleotide sequences of HS-α satellite DNA from kangaroo rat dipodomys ordii and characterization of similar sequences in other rodents , 1977, Cell.

[133]  H. Kotani,et al.  The size and sequence organization of the centromeric region of Arabidopsis thaliana chromosome 4. , 2001, DNA research : an international journal for rapid publication of reports on genes and genomes.

[134]  A. Luchetti,et al.  Polymerase chain reaction amplification of the Bag320 satellite family reveals the ancestral library and past gene conversion events in Bacillus rossius (Insecta Phasmatodea). , 2003, Gene.

[135]  A. Luchetti,et al.  Unisexuality and Molecular Drive: Bag320 Sequence Diversity in Bacillus Taxa (Insecta Phasmatodea) , 2003, Journal of Molecular Evolution.

[136]  M. Barucca,et al.  A satellite DNA containing CENP-B box-like motifs is present in the antarctic scallop Adamussium colbecki. , 2000, Gene.

[137]  H. Kotani,et al.  Physical map-based sizes of the centromeric regions of Arabidopsis thaliana chromosomes 1, 2, and 3. , 2002, DNA research : an international journal for rapid publication of reports on genes and genomes.

[138]  S. Henikoff,et al.  Sequencing of a rice centromere uncovers active genes , 2004, Nature Genetics.

[139]  C. Slamovits,et al.  Recurrent amplifications and deletions of satellite DNA accompanied chromosomal diversification in South American tuco-tucos (genus Ctenomys, Rodentia: Octodontidae): a phylogenetic approach. , 2001, Molecular biology and evolution.

[140]  Francesca Antonacci,et al.  Evolutionary Formation of New Centromeres in Macaque , 2007, Science.

[141]  H. Willard,et al.  Analysis of the centromeric regions of the human genome assembly. , 2004, Trends in genetics : TIG.

[142]  Huntington F. Willard,et al.  Chromosome-specific subsets of human alpha satellite DNA: Analysis of sequence divergence within and between chromosomal subsets and evidence for an ancestral pentameric repeat , 2005, Journal of Molecular Evolution.