Sn-based waveguide p-i-n photodetector with strained GeSn/Ge multiple-quantum-well active layer.

We report on Sn-based p-i-n waveguide photodetectors (WGPD) with a pseudomorphic GeSn/Ge multiple-quantum-well (MQW) active layer on a Ge-buffered Si substrate. A reduced dark-current density of 59  mA/cm2 was obtained at a reverse bias of 1 V due to the suppressed strain relaxation in the GeSn/Ge active layer. Responsivity experiments revealed an extended photodetection range covering the O, E, S, C, and L telecommunication bands completely due to the bandgap reduction resulting from Sn-alloying. Band structure analysis of the pseudomorphic GeSn/Ge quantum well structures indicated that, despite the stronger quantum confinement, the absorption edge can be shifted to longer wavelengths by increasing the Sn content, thereby enabling efficient photodetection in the infrared region. These results demonstrate the feasibility of using GeSn/Ge MQW planar photodetectors as building blocks of electronic-photonic integrated circuits for telecommunication and optical interconnection applications.

[1]  Y. Yeo,et al.  Germanium-tin multiple quantum well on silicon avalanche photodiode for photodetection at two micron wavelength , 2016 .

[2]  Wei Du,et al.  Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection. , 2016, Optics express.

[3]  J. Hartmann,et al.  Study of GeSn based heterostructures: towards optimized group IV MQW LEDs. , 2016, Optics express.

[4]  Wei Du,et al.  Optical Characterization of Si-Based Ge1−xSnx Alloys with Sn Compositions up to 12% , 2016, Journal of Electronic Materials.

[5]  L M Nguyen,et al.  Stress tuning of the fundamental absorption edge of pure germanium waveguides. , 2015, Optics express.

[6]  Jörg Schulze,et al.  Electroluminescence of GeSn/Ge MQW LEDs on Si substrate. , 2015, Optics letters.

[7]  Guo-En Chang,et al.  GeSn p-i-n waveguide photodetectors on silicon substrates , 2014 .

[8]  C. L. Senaratne,et al.  Ge1-ySny (y = 0.01-0.10) alloys on Ge-buffered Si: Synthesis, microstructure, and optical properties , 2014 .

[9]  M. Oehme,et al.  GeSn/Ge multiquantum well photodetectors on Si substrates. , 2014, Optics letters.

[10]  H. Li,et al.  Structural and optical characteristics of Ge 1−x Snx/Ge superlattices grown on Ge-buffered Si(001) wafers , 2014 .

[11]  R. Soref Silicon-based silicon–germanium–tin heterostructure photonics , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  R. A. Soref,et al.  GeSn-based p-i-n photodiodes with strained active layer on a Si wafer , 2013 .

[13]  G. Chang,et al.  Quantum-confined photoluminescence from Ge(1-x)Sn(x)/Ge superlattices on Ge-buffered Si(001) substrates. , 2013, Optics letters.

[14]  R Loo,et al.  GeSn/Ge heterostructure short-wave infrared photodetectors on silicon. , 2012, Optics express.

[15]  Jörg Schulze,et al.  GeSn p-i-n detectors integrated on Si with up to 4% Sn , 2012 .

[16]  Kei May Lau,et al.  Epitaxial III–V-on-silicon waveguide butt-coupled photodetectors , 2012, The 9th International Conference on Group IV Photonics (GFP).

[17]  T. Kamins,et al.  Investigation of the direct band gaps in Ge1−xSnx alloys with strain control by photoreflectance spectroscopy , 2012 .

[18]  M. Watts,et al.  Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current. , 2011, Optics express.

[19]  Qiming Wang,et al.  GeSn p-i-n photodetector for all telecommunication bands detection. , 2011, Optics express.

[20]  Shu-Wei Chang,et al.  Strain-Balanced ${\rm Ge}_{z}{\rm Sn}_{1-z}\hbox{--}{\rm Si}_{x}{\rm Ge}_{y}{\rm Sn}_{1-x-y}$ Multiple-Quantum-Well Lasers , 2010, IEEE Journal of Quantum Electronics.

[21]  Shui-Qing Yu,et al.  Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications , 2009 .

[22]  S. Chuang,et al.  Theory for n-type doped, tensile-strained Ge-Si(x)Ge(y)Sn1-x-y quantum-well lasers at telecom wavelength. , 2009, Optics express.

[23]  Stefan Zollner,et al.  Optical critical points of thin-film Ge 1-y Sn y alloys: A comparative Ge 1-y Sn y /Ge 1-x Si x study , 2006 .