Sn-based waveguide p-i-n photodetector with strained GeSn/Ge multiple-quantum-well active layer.
暂无分享,去创建一个
Hui Li | Guo-En Chang | G. Chang | H. H. Cheng | Yu-Hui Huang | H. H. Cheng | Hui Li | Yu-Hui Huang | H. H. Cheng
[1] Y. Yeo,et al. Germanium-tin multiple quantum well on silicon avalanche photodiode for photodetection at two micron wavelength , 2016 .
[2] Wei Du,et al. Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection. , 2016, Optics express.
[3] J. Hartmann,et al. Study of GeSn based heterostructures: towards optimized group IV MQW LEDs. , 2016, Optics express.
[4] Wei Du,et al. Optical Characterization of Si-Based Ge1−xSnx Alloys with Sn Compositions up to 12% , 2016, Journal of Electronic Materials.
[5] L M Nguyen,et al. Stress tuning of the fundamental absorption edge of pure germanium waveguides. , 2015, Optics express.
[6] Jörg Schulze,et al. Electroluminescence of GeSn/Ge MQW LEDs on Si substrate. , 2015, Optics letters.
[7] Guo-En Chang,et al. GeSn p-i-n waveguide photodetectors on silicon substrates , 2014 .
[8] C. L. Senaratne,et al. Ge1-ySny (y = 0.01-0.10) alloys on Ge-buffered Si: Synthesis, microstructure, and optical properties , 2014 .
[9] M. Oehme,et al. GeSn/Ge multiquantum well photodetectors on Si substrates. , 2014, Optics letters.
[10] H. Li,et al. Structural and optical characteristics of Ge 1−x Snx/Ge superlattices grown on Ge-buffered Si(001) wafers , 2014 .
[11] R. Soref. Silicon-based silicon–germanium–tin heterostructure photonics , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[12] R. A. Soref,et al. GeSn-based p-i-n photodiodes with strained active layer on a Si wafer , 2013 .
[13] G. Chang,et al. Quantum-confined photoluminescence from Ge(1-x)Sn(x)/Ge superlattices on Ge-buffered Si(001) substrates. , 2013, Optics letters.
[14] R Loo,et al. GeSn/Ge heterostructure short-wave infrared photodetectors on silicon. , 2012, Optics express.
[15] Jörg Schulze,et al. GeSn p-i-n detectors integrated on Si with up to 4% Sn , 2012 .
[16] Kei May Lau,et al. Epitaxial III–V-on-silicon waveguide butt-coupled photodetectors , 2012, The 9th International Conference on Group IV Photonics (GFP).
[17] T. Kamins,et al. Investigation of the direct band gaps in Ge1−xSnx alloys with strain control by photoreflectance spectroscopy , 2012 .
[18] M. Watts,et al. Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current. , 2011, Optics express.
[19] Qiming Wang,et al. GeSn p-i-n photodetector for all telecommunication bands detection. , 2011, Optics express.
[20] Shu-Wei Chang,et al. Strain-Balanced ${\rm Ge}_{z}{\rm Sn}_{1-z}\hbox{--}{\rm Si}_{x}{\rm Ge}_{y}{\rm Sn}_{1-x-y}$ Multiple-Quantum-Well Lasers , 2010, IEEE Journal of Quantum Electronics.
[21] Shui-Qing Yu,et al. Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications , 2009 .
[22] S. Chuang,et al. Theory for n-type doped, tensile-strained Ge-Si(x)Ge(y)Sn1-x-y quantum-well lasers at telecom wavelength. , 2009, Optics express.
[23] Stefan Zollner,et al. Optical critical points of thin-film Ge 1-y Sn y alloys: A comparative Ge 1-y Sn y /Ge 1-x Si x study , 2006 .