From the textual description of an accident to its causes

Every human being, reading a short report concerning a road accident, gets an idea of its causes. The work reported here attempts to enable a computer to do the same, i.e. to determine the causes of an event from a textual description of it. It relies heavily on the notion of norm for two reasons:*The notion of cause has often been debated but remains poorly understood: we postulate that what people tend to take as the cause of an abnormal event, like an accident, is the fact that a specific norm has been violated. *Natural Language Processing has given a prominent place to deduction, and for what concerns Semantics, to truth-based inference. However, norm-based inference is a much more powerful technique to get the conclusions that human readers derive from a text. The paper describes a complete chain of treatments, from the text to the determination of the cause. The focus is set on what is called ''linguistic'' and ''semantico-pragmatic'' reasoning. The former extracts so-called ''semantic literals'' from the result of the parse, and the latter reduces the description of the accident to a small number of ''kernel literals'' which are sufficient to determine its cause. Both of them use a non-monotonic reasoning system, viz. LPARSE and SMODELS. Several issues concerning the representation of modalities and time are discussed and illustrated by examples taken from a corpus of reports obtained from an insurance company.

[1]  John D. Bransford,et al.  The abstraction of linguistic ideas , 1971 .

[2]  Gennaro Chierchia,et al.  Meaning and grammar (2nd ed.): an introduction to semantics , 2000 .

[3]  Henry Kautz,et al.  A model of naive temporal reasoning , 1985 .

[4]  Gaston Gross,et al.  Verbes supports et conjugaison nominale , 1999 .

[5]  R. M. Hare,et al.  Norm and Action: A Logical Enquiry. , 1965 .

[6]  D. Hilton,et al.  The Psychology of Counterfactual Thinking , 2005 .

[7]  E. Feigenbaum,et al.  Computers and Thought , 1963 .

[8]  Roger C. Schank,et al.  SCRIPTS, PLANS, GOALS, AND UNDERSTANDING , 1988 .

[9]  Joseph Y. Halpern,et al.  Causes and Explanations: A Structural-Model Approach. Part I: Causes , 2000, The British Journal for the Philosophy of Science.

[10]  Sarit Kraus,et al.  Nonmonotonic Reasoning, Preferential Models and Cumulative Logics , 1990, Artif. Intell..

[11]  Magnus Boman,et al.  Norms in artificial decision making , 1999, Artificial Intelligence and Law.

[12]  Marvin Minsky,et al.  Semantic Information Processing , 1968 .

[13]  Laura Giordano,et al.  Conditional logic of actions and causation , 2004, Artif. Intell..

[14]  Theo Tryfonas,et al.  Frontiers in Artificial Intelligence and Applications , 2009 .

[15]  Patrick Henry Winston,et al.  The psychology of computer vision , 1976, Pattern Recognit..

[16]  Richard Johansson,et al.  Automatic Text-to-Scene Conversion in the Traffic Accident Domain , 2005, IJCAI.

[17]  Denis J. Hilton,et al.  The course of events: counterfactuals, causal sequences, and explanation , 2005 .

[18]  Henri Prade,et al.  A Comparative Study of Six Formal Models of Causal Ascription , 2008, SUM.

[19]  Gerhard Brewka Cumulative Default Logic: In Defense of Nonmonotonic Inference Rules , 1991, Artif. Intell..

[20]  Uwe Reyle,et al.  From discourse to logic , 1993 .

[21]  Patrice Enjalbert Sémantique et traitement automatique du langage naturel , 2005 .

[22]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[23]  Antony Galton,et al.  A unifying semantics for time and events , 2004, Artif. Intell..

[24]  Johan de Kleer,et al.  A Qualitative Physics Based on Confluences , 1984, Artif. Intell..

[25]  Wai Lam,et al.  Extracting causation knowledge from natural language texts , 2005 .

[26]  Jeroen Groenendijk,et al.  Dynamic predicate logic , 1991 .

[27]  John McCarthy,et al.  SOME PHILOSOPHICAL PROBLEMS FROM THE STANDPOINT OF ARTI CIAL INTELLIGENCE , 1987 .

[28]  Michael Thielscher,et al.  Ramification and Causality , 1997, Artif. Intell..

[29]  Farid Nouioua,et al.  Extraction et utilisation des normes pour un raisonnement causal dans un corps textuel , 2007 .

[30]  Christine Froidevaux,et al.  General Logical Databases and Programs: Default Logic Semantics and Stratification , 1991, Inf. Comput..

[31]  Maximilian Kistler Causalité et lois de la nature , 1999 .

[32]  Martin Gebser,et al.  The nomore++ System , 2005, LPNMR.

[33]  Michael Gelfond,et al.  Classical negation in logic programs and disjunctive databases , 1991, New Generation Computing.

[34]  Adeline Nazarenko,et al.  La cause et son expression en Français , 2000 .

[35]  Wendy Grace Lehnert,et al.  The Process of Question Answering , 2022 .

[36]  David W. Etherington Formalizing Nonmonotonic Reasoning Systems , 1987, Artif. Intell..

[37]  D. García Analyse automatique des textes pour l'organisation causale des actions : réalisation du système informatique COATIS , 1998 .

[38]  F. Dignum,et al.  From Desires, Obligations and Norms to Goals , 2002 .

[39]  Yuliya Lierler,et al.  Cmodels-2: SAT-based Answer Set Solver Enhanced to Non-tight Programs , 2004, LPNMR.

[40]  Raymond Reiter,et al.  On Interacting Defaults , 1981, IJCAI.

[41]  J. Wu,et al.  Natural language understanding in road accident data analysis , 1995 .

[42]  Herbert A. Simon,et al.  Causality in Device Behavior , 1989, Artif. Intell..

[43]  David E. Smith,et al.  Reasoning About Action II: The Qualification Problem , 1988, Artif. Intell..

[44]  James P. Delgrande,et al.  An Approach to Default Reasoning Based on a First-Order Conditional Logic: Revised Report , 1987, Artif. Intell..

[45]  Bert F. Green,et al.  Baseball: an automatic question-answerer , 1899, IRE-AIEE-ACM '61 (Western).

[46]  Aïcha Mokhtari,et al.  Time in a causal theory , 2004, Annals of Mathematics and Artificial Intelligence.

[47]  Alex S. Taylor,et al.  Machine intelligence , 2009, CHI.

[48]  Wolfgang Faber,et al.  The DLV system for knowledge representation and reasoning , 2002, TOCL.

[49]  J. Mackie,et al.  The cement of the universe : a study of causation , 1977 .

[50]  Varol Akman,et al.  Representing the Zoo World and the Traffic World in the language of the Causal Calculator , 2004, Artif. Intell..

[51]  D. McDermott A Temporal Logic for Reasoning About Processes and Plans , 1982, Cogn. Sci..

[52]  Daniel Kayser,et al.  Vers la construction de descriptions argumentées d’un accident de la route : analyse de diverses stratégies argumentatives , 2008 .

[53]  A. Colmerauer Les systèmes Q ou un formalisme pour analyser et synthétiser des phrases sur ordinateur , 1992 .

[54]  Enrico Giunchiglia,et al.  Nonmonotonic causal theories , 2004, Artif. Intell..

[55]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[56]  Daniel G. Bobrow,et al.  Natural Language Input for a Computer Problem Solving System , 1964 .

[57]  Ilkka Niemelä,et al.  The Smodels System , 2001, LPNMR.

[58]  Daniel Lehmann,et al.  What does a Conditional Knowledge Base Entail? , 1989, Artif. Intell..

[59]  Gennaro Chierchia,et al.  Meaning and Grammar: An Introduction to Semantics , 1990 .

[60]  Marvin Minsky,et al.  A framework for representing knowledge , 1974 .

[61]  Farid Nouioua,et al.  Using Answer Set Programming in an Inference-Based approach to Natural Language Semantics , 2006, ArXiv.