Efficient production of androstenedione by repeated batch fermentation in waste cooking oil media through regulating NAD+/NADH ratio and strengthening cell vitality of Mycobacterium neoaurum.

[1]  Yopi,et al.  Repeated ethanol fermentation from membrane-concentrated sweet sorghum juice using the flocculating yeast Saccharomyces cerevisiae F118 strain. , 2018, Bioresource technology.

[2]  Min Wang,et al.  Overexpression of cytochrome p450 125 in Mycobacterium: a rational strategy in the promotion of phytosterol biotransformation , 2018, Journal of Industrial Microbiology & Biotechnology.

[3]  C. Vilchèze,et al.  Small Molecules Targeting Mycobacterium tuberculosis Type II NADH Dehydrogenase Exhibit Antimycobacterial Activity. , 2018, Angewandte Chemie.

[4]  Filipe M. Sousa,et al.  Regulation of the mechanism of Type-II NADH: Quinone oxidoreductase from S. aureus , 2018, Redox biology.

[5]  N. Muhammad,et al.  Preparation and kinetics study of biodiesel production from waste cooking oil using new functionalized ionic liquids as catalysts , 2017 .

[6]  Min Wang,et al.  Cofactor engineering to regulate NAD+/NADH ratio with its application to phytosterols biotransformation , 2017, Microbial Cell Factories.

[7]  M. Donova,et al.  Effect of methyl-β-cyclodextrin on gene expression in microbial conversion of phytosterol , 2017, Applied Microbiology and Biotechnology.

[8]  Y. Qu,et al.  Improving cellulase productivity of Penicillium oxalicum RE-10 by repeated fed-batch fermentation strategy. , 2017, Bioresource technology.

[9]  Yanhui Du,et al.  Enhancing Saccharomyces cerevisiae reactive oxygen species and ethanol stress tolerance for high-level production of protopanoxadiol. , 2017, Bioresource technology.

[10]  Min Wang,et al.  Improvement of AD Biosynthesis Response to Enhanced Oxygen Transfer by Oxygen Vectors in Mycobacterium neoaurum TCCC 11979 , 2017, Applied Biochemistry and Biotechnology.

[11]  Young-Min Kim,et al.  L-Lactic acid production by combined utilization of agricultural bioresources as renewable and economical substrates through batch and repeated-batch fermentation of Enterococcus faecalis RKY1. , 2016, Bioresource technology.

[12]  G. Peltier,et al.  NDH-1 and NDH-2 Plastoquinone Reductases in Oxygenic Photosynthesis. , 2016, Annual review of plant biology.

[13]  Zhenghong Xu,et al.  Efficient production of bioactive metabolites from Antrodia camphorata ATCC 200183 by asexual reproduction-based repeated batch fermentation. , 2015, Bioresource technology.

[14]  D. Beard,et al.  Determining the origins of superoxide and hydrogen peroxide in the mammalian NADH:ubiquinone oxidoreductase. , 2014, Free radical biology & medicine.

[15]  D. Wei,et al.  Accumulation of androstadiene-dione by overexpression of heterologous 3-ketosteroid Δ1-dehydrogenase in Mycobacterium neoaurum NwIB-01 , 2014, World Journal of Microbiology and Biotechnology.

[16]  Vivek Sharma,et al.  A single amino acid residue controls ROS production in the respiratory Complex I from Escherichia coli , 2013, Molecular microbiology.

[17]  S. G. Malakho,et al.  Comparative analysis of genes encoding key steroid core oxidation enzymes in fast-growing Mycobacterium spp. strains , 2013, The Journal of Steroid Biochemistry and Molecular Biology.

[18]  B. Galán,et al.  Catabolism and biotechnological applications of cholesterol degrading bacteria , 2012, Microbial biotechnology.

[19]  Min Wang,et al.  Influence of hydroxypropyl-β-cyclodextrin on phytosterol biotransformation by different strains of Mycobacterium neoaurum , 2012, Journal of Industrial Microbiology & Biotechnology.

[20]  M. Donova,et al.  Microbial steroid transformations: current state and prospects , 2012, Applied Microbiology and Biotechnology.

[21]  C. Barbosa,et al.  Accumulation of Non-Superoxide Anion Reactive Oxygen Species Mediates Nitrogen-Limited Alcoholic Fermentation by Saccharomyces cerevisiae , 2010, Applied and Environmental Microbiology.

[22]  Carla C. C. R. de Carvalho,et al.  Sitosterol bioconversion with resting cells in liquid polymer based systems. , 2009, Bioresource technology.

[23]  Chenyu Du,et al.  Introduction of an NADH regeneration system into Klebsiella oxytoca leads to an enhanced oxidative and reductive metabolism of glycerol. , 2009, Metabolic engineering.

[24]  J. Manosroi,et al.  Enhancement of 17α-hydroxyprogesterone production from progesterone by biotransformation using hydroxypropyl-β-cyclodextrin complexation technique , 2008, The Journal of Steroid Biochemistry and Molecular Biology.

[25]  J. Gomes,et al.  Androstenedione production by biotransformation of phytosterols. , 2008, Bioresource technology.

[26]  L. Du,et al.  Effect of phase composition on the bioconversion of methyltestosterone in a biphasic system , 2008 .

[27]  C. Winterbourn,et al.  Reconciling the chemistry and biology of reactive oxygen species. , 2008, Nature chemical biology.

[28]  J. Manosroi,et al.  Enhancement of androstadienedione production from progesterone by biotransformation using the hydroxypropyl-β-cyclodextrin complexation technique , 2008, The Journal of Steroid Biochemistry and Molecular Biology.

[29]  P. Fernandes,et al.  Phytosterols: applications and recovery methods. , 2007, Bioresource technology.

[30]  V. Beschkov,et al.  Biotransformation of Phytosterols to Androstenedione in Two Phase Water-oil Systems , 2006 .

[31]  K. Matsushita,et al.  Electron Transfer Ability from NADH to Menaquinone and from NADPH to Oxygen of Type II NADH Dehydrogenase of Corynebacterium glutamicum , 2005, Bioscience, biotechnology, and biochemistry.

[32]  M. Teixeira,et al.  New Insights into Type II NAD(P)H:Quinone Oxidoreductases , 2004, Microbiology and Molecular Biology Reviews.

[33]  J. Rathman,et al.  Lecithin-enhanced biotransformation of cholesterol to androsta-1,4-diene-3,17-dione and androsta-4-ene-3,17-dione , 2002 .

[34]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[35]  R. Bar,et al.  Formation of mixed crystals in microbial conversion of sterols and steroids , 1992 .

[36]  A. Szentirmai Microbial physiology of sidechain degradation of sterols , 1990, Journal of Industrial Microbiology.

[37]  M. Reis,et al.  Burkholderia thailandensis as a microbial cell factory for the bioconversion of used cooking oil to polyhydroxyalkanoates and rhamnolipids. , 2018, Bioresource technology.

[38]  Huiming Zhang,et al.  Waste cooking oil-to-energy under incomplete information: Identifying policy options through an evolutionary game , 2017 .

[39]  M. Romero,et al.  Deoxygenation of waste cooking oil and non-edible oil for the production of liquid hydrocarbon biofuels. , 2016, Waste management.

[40]  Min Wang,et al.  Hydroxypropyl-β-cyclodextrin-mediated alterations in cell permeability, lipid and protein profiles of steroid-transforming Arthrobacter simplex , 2014, Applied Microbiology and Biotechnology.