Parity-time symmetry in optical microcavity systems

Canonical quantum mechanics postulates Hermitian Hamiltonians to ensure real eigenvalues. Counterintuitively, a non-Hermitian Hamiltonian, satisfying combined parity-time (PT) symmetry, could display entirely real spectra above some phase-transition threshold. This stems from the existence of a parameter in the Hamiltonian governing characteristics features of eigenvalues and eigenfunctions. Varying this parameter causes real eigenvalues to coalesce and become complex conjugate pairs, signaling the occurrence of a nontrivial phase transition and the breakdown of PT symmetry. Such an appealing discovery has aroused extensive theoretical interest in extending canonical quantum theory by including non-Hermitian but PT-symmetric operators in the last two decades. Despite much fundamental theoretical success in the development of PT-symmetric quantum mechanics, an experimental observation of pseudo-Hermiticity remains elusive as these systems with complex potential seem absent in Nature. But nevertheless, the notion of PT symmetry has survived in many other branches of physics including optics, photonics, AMO physics, acoustics, electronic circuits, and material science over the past ten years, where a judicious balance of gain and loss constitutes ingeniously a PT-symmetric system. Here, although we concentrate upon reviewing recent progress on PT symmetry in optical microcavity systems, we also wish to present some new results that may help to accelerate the research in the area. These compound photonic structures with gain and loss provide a powerful platform for testing various theoretical proposals on PT symmetry, and initiate new possibilities for shaping optical beams and pulses beyond conservative structures. Throughout this article there is an effort to clearly present the physical aspects of PT-symmetry in optical microcavity systems, but mathematical formulations are reduced to the indispensable ones. Readers who prefer strict mathematical treatments should resort to the extensive list of references. Despite the rapid progress on the subject, new ideas and applications of PT symmetry using optical microcavities are still expected in the future.

[1]  Demetrios N. Christodoulides,et al.  Non-Hermitian physics and PT symmetry , 2018, Nature Physics.

[2]  Li Ge,et al.  Non-Hermitian photonics based on parity–time symmetry , 2017 .

[3]  Fan Yang,et al.  Anti- PT symmetry in dissipatively coupled optical systems , 2017 .

[4]  Demetrios N. Christodoulides,et al.  Enhanced sensitivity at higher-order exceptional points , 2017, Nature.

[5]  Lan Yang,et al.  Exceptional points enhance sensing in an optical microcavity , 2017, Nature.

[6]  Shanhui Fan,et al.  Robust wireless power transfer using a nonlinear parity–time-symmetric circuit , 2017, Nature.

[7]  G. Agarwal,et al.  Hidden PT Symmetry and quantization of coupled-oscillators model of QASER , 2017, 1705.02396.

[8]  M Segev,et al.  Topologically protected bound states in photonic parity-time-symmetric crystals. , 2017, Nature materials.

[9]  Y. Aurégan,et al.  PT-Symmetric Scattering in Flow Duct Acoustics. , 2017, Physical review letters.

[10]  Shiyue Hua,et al.  On-Chip Optical Nonreciprocity Using an Active Microcavity , 2016, Scientific Reports.

[11]  R. El-Ganainy,et al.  Parametric amplification in quasi-PT symmetric coupled waveguide structures , 2016 .

[12]  Yuang Wang,et al.  Lasing and anti-lasing in a single cavity , 2016, Nature Photonics.

[13]  C. Bender Rigorous backbone of   -symmetric quantum mechanics , 2016 .

[14]  Min Xiao,et al.  Dynamical phonon laser in coupled active-passive microresonators , 2016, 1609.00075.

[15]  Natalia M. Litchinitser,et al.  Orbital angular momentum microlaser , 2016, Science.

[16]  P. Berini,et al.  Observation of exceptional points in reconfigurable non-Hermitian vector-field holographic lattices , 2016, Nature Communications.

[17]  Xiaoshun Jiang,et al.  Demonstration of a chip-based optical isolator with parametric amplification , 2016, Nature Communications.

[18]  Lan Yang,et al.  Chiral modes and directional lasing at exceptional points , 2016, Proceedings of the National Academy of Sciences.

[19]  D. Christodoulides,et al.  Single mode lasing in transversely multi‐moded PT‐symmetric microring resonators , 2016, 1604.06424.

[20]  Axel Scherer,et al.  Experimental realization of Bloch oscillations in a parity-time synthetic silicon photonic lattice , 2016, Nature Communications.

[21]  D. Christodoulides,et al.  Observation of Parity-Time Symmetry in Optically Induced Atomic Lattices. , 2016, Physical review letters.

[22]  Y. Wang,et al.  Accessing the exceptional points of parity-time symmetric acoustics , 2016, Nature Communications.

[23]  Jianke Yang,et al.  Nonlinear waves in PT -symmetric systems , 2016, 1603.06826.

[24]  Jan Wiersig,et al.  Sensors operating at exceptional points: General theory , 2016 .

[25]  S. Fan,et al.  Exceptional Contours and Band Structure Design in Parity-Time Symmetric Photonic Crystals. , 2016, Physical review letters.

[26]  U. Peschel,et al.  Observation of Bloch oscillations in complex PT-symmetric photonic lattices , 2015, Scientific Reports.

[27]  T. Wasak,et al.  Four-wave mixing in a parity-time (PT)-symmetric coupler. , 2015, Optics letters.

[28]  R. El-Ganainy,et al.  Optical parametric amplification via non-Hermitian phase matching. , 2015, Optics letters.

[29]  Demetrios N. Christodoulides,et al.  Nonlinear reversal of the PT -symmetric phase transition in a system of coupled semiconductor microring resonators , 2015, 1510.03936.

[30]  Liang Jiang,et al.  Anti-parity–time symmetry with flying atoms , 2015, Nature Physics.

[31]  Yuri S. Kivshar,et al.  Nonlinear switching and solitons in PT‐symmetric photonic systems , 2015, 1509.03378.

[32]  Henning Schomerus,et al.  Topologically Protected Defect States in Open Photonic Systems with Non-Hermitian Charge-Conjugation and Parity-Time Symmetry. , 2015, Physical review letters.

[33]  P. Rabl,et al.  P T -symmetry breaking in the steady state of microscopic gain–loss systems , 2015, 1508.00594.

[34]  J. Bird,et al.  A review of progress in the physics of open quantum systems: theory and experiment , 2015, Reports on progress in physics. Physical Society.

[35]  U. Peschel,et al.  Observation of optical solitons in PT-symmetric lattices , 2015, Nature Communications.

[36]  Ying Wu,et al.  PT-Symmetry-Breaking Chaos in Optomechanics. , 2015, Physical review letters.

[37]  Simon A. R. Horsley,et al.  Spatial Kramers–Kronig relations and the reflection of waves , 2015, Nature Photonics.

[38]  Zongfu Yu,et al.  Limitations of nonlinear optical isolators due to dynamic reciprocity , 2015, Nature Photonics.

[39]  Nan Zhang,et al.  Experimental demonstration of PT‐symmetric stripe lasers , 2015, 1505.03937.

[40]  Shiyue Hua,et al.  Modeling of On-Chip Optical Nonreciprocity with an Active Microcavity , 2015 .

[41]  B. Kress,et al.  Analysis of unidirectional non-paraxial invisibility of purely reflective PT-symmetric volume gratings. , 2015, Optics express.

[42]  A. Kavokin,et al.  Permanent Rabi oscillations in coupled exciton-photon systems with PT -symmetry , 2015, Scientific Reports.

[43]  T. Kottos,et al.  Macroscopic magnetic structures with balanced gain and loss , 2015 .

[44]  Jin-Hui Wu,et al.  Parity-time-antisymmetric atomic lattices without gain , 2015 .

[45]  C. Yuce Topological phase in a non-Hermitian PT symmetric system , 2015, 1502.07160.

[46]  Min Xiao,et al.  Cyclic permutation-time symmetric structure with coupled gain-loss microcavities , 2015, 1501.07883.

[47]  Ana Vukovic,et al.  Parity-time symmetric coupled microresonators with a dispersive gain/loss. , 2015, Optics express.

[48]  Noel C. Giebink,et al.  Passive Parity-Time Symmetry in Organic Thin Film Waveguides , 2015 .

[49]  J. Wiersig,et al.  Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics , 2015 .

[50]  R. Fleury,et al.  An invisible acoustic sensor based on parity-time symmetry , 2015, Nature Communications.

[51]  Y. Wang,et al.  Single-mode laser by parity-time symmetry breaking , 2014, Science.

[52]  A. P. Vinogradov,et al.  PT-symmetry in optics , 2014 .

[53]  C. Bender,et al.  Loss-induced suppression and revival of lasing , 2014, Science.

[54]  V. Konotop,et al.  -symmetric spin-orbit–coupled condensate , 2014 .

[55]  Jiaguang Han,et al.  Manifestation of PT symmetry breaking in polarization space with terahertz metasurfaces. , 2014, Physical review letters.

[56]  B. Malomed,et al.  PT symmetry in optics beyond the paraxial approximation. , 2014, Optics letters.

[57]  A. Szameit,et al.  Light transport in PT-invariant photonic structures with hidden symmetries , 2014, 1408.1561.

[58]  B. He,et al.  Quantum noise effects with Kerr-nonlinearity enhancement in coupled gain-loss waveguides , 2014, 1408.0565.

[59]  Ulrich Kuhl,et al.  Selective enhancement of topologically induced interface states in a dielectric resonator chain , 2014, Nature Communications.

[60]  Andrea Alù,et al.  Negative refraction and planar focusing based on parity-time symmetric metasurfaces. , 2014, Physical review letters.

[61]  F. Nori,et al.  Multistability and condensation of exciton-polaritons below threshold , 2014, 1407.1271.

[62]  Shiyue Hua,et al.  Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators , 2014, Nature Photonics.

[63]  Jan Wiersig,et al.  Enhancing the Sensitivity of Frequency and Energy Splitting Detection by Using Exceptional Points: Application to Microcavity Sensors for Single-Particle Detection , 2014 .

[64]  N. Giebink,et al.  Passive PT Symmetry in Organic Composite Films via Complex Refractive Index Modulation , 2014 .

[65]  D. Christodoulides,et al.  Optical isolation via -symmetric nonlinear Fano resonances. , 2014 .

[66]  Hong Chen,et al.  Experimental demonstration of a coherent perfect absorber with PT phase transition. , 2014, Physical review letters.

[67]  G. Strasser,et al.  Reversing the pump dependence of a laser at an exceptional point , 2014, Nature Communications.

[68]  Stephan Ramon Garcia,et al.  Mathematical and physical aspects of complex symmetric operators , 2014, 1404.1304.

[69]  Andrew J. Daley,et al.  Quantum trajectories and open many-body quantum systems , 2014, 1405.6694.

[70]  F. Nori,et al.  PT-symmetric phonon laser. , 2014, Physical review letters.

[71]  Yu-xi Liu,et al.  Mechanical PT symmetry in coupled optomechanical systems , 2014, 1402.7222.

[72]  Jennifer A. Dionne,et al.  Non-Hermitian nanophotonic and plasmonic waveguides , 2014 .

[73]  Alexander Szameit,et al.  Supersymmetric mode converters , 2014, Nature Communications.

[74]  S. Flammia,et al.  Local PT symmetry violates the no-signaling principle. , 2013, Physical review letters.

[75]  S. Longhi Convective and absolute PT-symmetry breaking in tight-binding lattices , 2013, 1310.5004.

[76]  Henri Benisty,et al.  Switching using PT symmetry in plasmonic systems: positive role of the losses. , 2013, Optics express.

[77]  C. Bender,et al.  Parity–time-symmetric whispering-gallery microcavities , 2013, Nature Physics.

[78]  D. Brody Biorthogonal quantum mechanics , 2013, 1308.2609.

[79]  Philipp Ambichl,et al.  Breaking of PT-symmetry in bounded and unbounded scattering systems , 2013, 1307.0149.

[80]  D. Christodoulides,et al.  PT-symmetric optical potentials in a coherent atomic medium , 2013, 1305.4908.

[81]  C. Bender,et al.  PT quantum mechanics , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[82]  D. Christodoulides,et al.  Observation of asymmetric transport in structures with active nonlinearities. , 2013, Physical review letters.

[83]  Mohammad-Ali Miri,et al.  Observation of defect states in PT-symmetric optical lattices. , 2013, Physical review letters.

[84]  Henning Schomerus,et al.  Topologically protected midgap states in complex photonic lattices. , 2013, Optics letters.

[85]  Chao Hang,et al.  PT symmetry with a system of three-level atoms. , 2012, Physical review letters.

[86]  M. Belić,et al.  Anderson localization of light in PT-symmetric optical lattices. , 2012, Optics letters.

[87]  Andrea Alù,et al.  PT metamaterials via complex-coordinate transformation optics. , 2012, Physical review letters.

[88]  W. Heiss,et al.  The physics of exceptional points , 2012, 1210.7536.

[89]  Nick Lazarides,et al.  Gain-driven discrete breathers in PT-symmetric nonlinear metamaterials. , 2012, Physical review letters.

[90]  Usa,et al.  -symmetric electronics , 2012, 1209.2347.

[91]  Li Ge,et al.  Antisymmetric PT-photonic structures with balanced positive and negative index materials , 2012, 1208.4644.

[92]  U. Peschel,et al.  Parity–time synthetic photonic lattices , 2012, Nature.

[93]  Demetrios N. Christodoulides,et al.  Optical mesh lattices with PT symmetry , 2012, 1208.1722.

[94]  C. Bender,et al.  Observation of PT phase transition in a simple mechanical system , 2012, 1206.4972.

[95]  Ali Mostafazadeh,et al.  Invisibility and PT symmetry , 2012, 1206.0116.

[96]  Holger Cartarius,et al.  Model of a PT-symmetric Bose-Einstein condensate in a delta-function double-well potential , 2012, 1203.1885.

[97]  B. Malomed,et al.  Wave scattering on a domain wall in a chain of PT-symmetric couplers , 2012, 1202.5629.

[98]  Li Ge,et al.  Conservation relations and anisotropic transmission resonances in one-dimensional PT-symmetric photonic heterostructures , 2011, 1112.5167.

[99]  Demetrios N. Christodoulides,et al.  Exceptional-point dynamics in photonic honeycomb lattices with PT symmetry , 2011, 1112.4734.

[100]  Mohammad Kazem Moravvej-Farshi,et al.  A 2×2 spatial optical switch based on PT-symmetry. , 2011, Optics letters.

[101]  S. Longhi Invisibility in -symmetric complex crystals , 2011, 1111.3448.

[102]  H. Jones Analytic results for a PT-symmetric optical structure , 2011, 1111.2041.

[103]  N. Moiseyev,et al.  On the observability and asymmetry of adiabatic state flips generated by exceptional points , 2011 .

[104]  S. Huelga,et al.  Open Quantum Systems: An Introduction , 2011 .

[105]  H. Schomerus,et al.  Quantum noise and mode nonorthogonality in non-Hermitian PT-symmetric optical resonators , 2011, 1109.4932.

[106]  Tsampikos Kottos,et al.  Experimental study of active LRC circuits with PT symmetries , 2011, 1109.2913.

[107]  Henri Benisty,et al.  Implementation of PT symmetric devices using plasmonics: principle and applications. , 2011, Optics express.

[108]  H. Harney,et al.  PT symmetry and spontaneous symmetry breaking in a microwave billiard. , 2011, Physical review letters.

[109]  T. Hughes,et al.  Absence of topological insulator phases in non-Hermitian PT-symmetric Hamiltonians , 2011, 1107.1064.

[110]  Hui Cao,et al.  Unidirectional invisibility induced by PT-symmetric periodic structures. , 2011, Physical review letters.

[111]  M. Segev,et al.  PT-symmetry in honeycomb photonic lattices , 2011, 1103.3389.

[112]  Yidong Chong,et al.  Time-Reversed Lasing and Interferometric Control of Absorption , 2011, Science.

[113]  P. Kevrekidis,et al.  PT-symmetric oligomers: analytical solutions, linear stability, and nonlinear dynamics. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[114]  D. N. Christodoulides,et al.  $\mathcal{PT}$-Symmetric Periodic Optical Potentials , 2011 .

[115]  Stefano Longhi,et al.  PT-symmetric laser absorber , 2010, 1008.5298.

[116]  Li Ge,et al.  PT-symmetry breaking and laser-absorber modes in optical scattering systems. , 2010, Physical review letters.

[117]  V. Vinokur,et al.  Stimulation of the fluctuation superconductivity by PT symmetry. , 2010, Physical review letters.

[118]  A. Saxena,et al.  Robust and fragile PT -symmetric phases in a tight-binding chain , 2010, 1008.2968.

[119]  Stefano Longhi,et al.  Optical realization of relativistic non-Hermitian quantum mechanics. , 2010, Physical review letters.

[120]  University of Central Florida,et al.  Unidirectional nonlinear PT-symmetric optical structures , 2010, 1005.5189.

[121]  Y. Chong,et al.  Coherent perfect absorbers: Time-reversed lasers , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[122]  M. Segev,et al.  Observation of parity–time symmetry in optics , 2010 .

[123]  S. Longhi,et al.  Spectral singularities and Bragg scattering in complex crystals , 2010, 1001.0962.

[124]  H. Schomerus Quantum noise and self-sustained radiation of PT-symmetric systems. , 2010, Physical review letters.

[125]  S. Longhi Spectral singularities in a non-Hermitian Friedrichs-Fano-Anderson model , 2009, 1001.0964.

[126]  S. Longhi,et al.  Bloch oscillations in complex crystals with PT symmetry. , 2009, Physical review letters.

[127]  R. Morandotti,et al.  Observation of PT-symmetry breaking in complex optical potentials. , 2009, Physical review letters.

[128]  Ragnar Fleischmann,et al.  Exponentially fragile PT symmetry in lattices with localized eigenmodes. , 2009, Physical review letters.

[129]  Ingrid Rotter,et al.  A non-Hermitian Hamilton operator and the physics of open quantum systems , 2009 .

[130]  A. Mostafazadeh Spectral singularities of complex scattering potentials and infinite reflection and transmission coefficients at real energies. , 2009, Physical review letters.

[131]  A. Mostafazadeh,et al.  Spectral singularities, biorthonormal systems and a two-parameter family of complex point interactions , 2009, 0901.3563.

[132]  Z. Musslimani,et al.  Beam dynamics in PT symmetric optical lattices. , 2008, Physical review letters.

[133]  Shachar Klaiman,et al.  Visualization of branch points in PT-symmetric waveguides. , 2008, Physical review letters.

[134]  R. El-Ganainy,et al.  Optical solitons in PT periodic potentials , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[135]  John E. Heebner,et al.  Optical Microresonators: Theory, Fabrication, and Applications , 2007 .

[136]  Z. Musslimani,et al.  Theory of coupled optical PT-symmetric structures. , 2007, Optics letters.

[137]  J. Rubinstein,et al.  Bifurcation diagram and pattern formation of phase slip centers in superconducting wires driven with electric currents. , 2007, Physical review letters.

[138]  Carl M. Bender,et al.  Making sense of non-Hermitian Hamiltonians , 2007, hep-th/0703096.

[139]  C. Bender,et al.  Faster than Hermitian quantum mechanics. , 2006, Physical review letters.

[140]  H. B. Geyer,et al.  The Physics of Non-Hermitian Operators , 2006 .

[141]  A. Ventura,et al.  Scattering in PT-symmetric quantum mechanics , 2006, quant-ph/0606129.

[142]  J. G. Muga,et al.  Physical realization of -symmetric potential scattering in a planar slab waveguide , 2005, 1706.04056.

[143]  C. Bender Introduction to 𝒫𝒯-symmetric quantum theory , 2005, quant-ph/0501052.

[144]  M. Berry Physics of Nonhermitian Degeneracies , 2004 .

[145]  Mircea Dragoman,et al.  Quantum-Classical Analogies , 2004 .

[146]  A. Mostafazadeh PT-symmetric Quantum Mechanics: A Precise and Consistent Formulation , 2004, quant-ph/0407213.

[147]  J. G. Muga,et al.  Complex absorbing potentials , 2004 .

[148]  R. J. Potton,et al.  Reciprocity in optics , 2004 .

[149]  Heidelberg,et al.  Encircling an exceptional point. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[150]  W. Heiss Exceptional points of non-Hermitian operators , 2003, quant-ph/0304152.

[151]  A. Mostafazadeh Exact PT-symmetry is equivalent to Hermiticity , 2003, quant-ph/0304080.

[152]  Dorje C. Brody,et al.  Must a Hamiltonian be Hermitian , 2003, hep-th/0303005.

[153]  A. Mostafazadeh Pseudo-Hermiticity and Generalized PT- and CPT-Symmetries , 2002, math-ph/0209018.

[154]  C. Bender,et al.  Complex extension of quantum mechanics. , 2002, Physical review letters.

[155]  M. Berry,et al.  Generalized PT symmetry and real spectra , 2002 .

[156]  A. Mostafazadeh Pseudo-Hermiticity versus PT-symmetry III: Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries , 2002, math-ph/0203005.

[157]  A. Mostafazadeh Pseudo-Hermiticity versus PT-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum , 2001, math-ph/0110016.

[158]  A. Mostafazadeh Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian , 2001, math-ph/0107001.

[159]  M. Dragoman,et al.  Optical analogue structures to mesoscopic devices , 1999 .

[160]  C. Bender,et al.  PT-symmetric quantum mechanics , 1998, 2312.17386.

[161]  C. Bender,et al.  Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.

[162]  J. Dankovicová Czech , 1997, Journal of the International Phonetic Association.

[163]  N. Hatano,et al.  Vortex pinning and non-Hermitian quantum mechanics , 1997, cond-mat/9705290.

[164]  S. G. Krivoshlykov Quantum-Theoretical Formalism for Inhomogeneous Graded-Index Waveguides , 1994 .

[165]  Allen,et al.  Paraxial wave optics and harmonic oscillators. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[166]  Gagnon,et al.  Aspherical laser resonators: An analogy with quantum mechanics. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[167]  Canright,et al.  Some consequences of scrPscrT symmetry for optical rotation experiments. , 1992, Physical review letters.

[168]  I. Dzyaloshinskiǐ Space and time parity violation in anyonic and chiral systems , 1991 .

[169]  A. Zamolodchikov Two-point correlation function in scaling Lee-Yang model , 1991 .

[170]  J. Cardy,et al.  Conformal invariance and the Yang-Lee edge singularity in two dimensions. , 1985, Physical review letters.

[171]  E. Caliceti,et al.  Perturbation theory of odd anharmonic oscillators , 1980 .

[172]  Michael E. Fisher,et al.  Yang-Lee Edge Singularity and ϕ 3 Field Theory , 1978 .

[173]  Richard C. Brower,et al.  Critical Exponents for the Reggeon Quantum Spin Model , 1978 .

[174]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[175]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[176]  M. Kelly,et al.  Electronic structure from non-hermitian representations of the Hamiltonian , 1975 .

[177]  T. D. Lee,et al.  Negative Metric and the Unitarity of the S Matrix , 1969 .

[178]  Hermann Haken,et al.  The quantum-fluctuations of the optical parametric oscillator. I , 1968 .

[179]  T. Wu Ground State of a Bose System of Hard Spheres , 1959 .

[180]  C. Porter,et al.  Model for Nuclear Reactions with Neutrons , 1954 .

[181]  G. Gamow,et al.  Zur Quantentheorie des Atomkernes , 1928 .

[182]  A. Scherer,et al.  Supplementary Information Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies , 2012 .

[183]  N. Moiseyev,et al.  Non-Hermitian Quantum Mechanics: Frontmatter , 2011 .

[184]  P. Yeh,et al.  Photonics : optical electronics in modern communications , 2006 .

[185]  K. Vahala Optical microcavities , 2003, Nature.

[186]  H. Carmichael An open systems approach to quantum optics , 1993 .

[187]  B. Harms,et al.  Complex energy spectra in reggeon quantum mechanics with quartic interactions , 1980 .

[188]  Tosio Kato Perturbation theory for linear operators , 1966 .

[189]  V. S. Gur'yanov ON THE UNIFIED THEORY OF NUCLEAR REACTIONS , 1964 .

[190]  E. Schrödinger Quantisierung als Eigenwertproblem , 1925 .