Bilinear forms on the Dirichlet space

Let $\mathcal{D}$ be the classical Dirichlet space, the Hilbert space of holomorphic functions on the disk. Given a holomorphic symbol function $b$ we define the associated Hankel type bilinear form, initially for polynomials f and g, by $T_{b}(f,g):= _{\mathcal{D}} $, where we are looking at the inner product in the space $\mathcal{D}$. We let the norm of $T_{b}$ denotes its norm as a bilinear map from $\mathcal{D}\times\mathcal{D}$ to the complex numbers. We say a function $b$ is in the space $\mathcal{X}$ if the measure $d\mu_{b}:=| b^{\prime}(z)| ^{2}dA$ is a Carleson measure for $\mathcal{D}$ and norm $\mathcal{X}$ by $$ \Vert b\Vert_{\mathcal{X}}:=| b(0)| +\Vert | b^{\prime}(z)| ^{2}dA\Vert_{CM(\mathcal{D})}^{1/2}. $$ Our main result is $T_{b}$ is bounded if and only if $b\in\mathcal{X}$ and $$ \Vert T_{b}\Vert_{\mathcal{D\times D}}\approx\Vert b\Vert_{\mathcal{X}}. $$

[1]  David A. Stegenga,et al.  Multipliers of the Dirichlet space , 1980 .

[2]  A characterization of product BMO by commutators , 2001 .

[3]  R. Rochberg,et al.  Carleson Measures and Interpolating Sequences for Besov Spaces on Complex Balls , 2006 .

[4]  Richard Rochberg,et al.  BOUNDEDNESS OF HIGHER ORDER HANKEL FORMS, FACTORIZATION IN POTENTIAL SPACES AND DERIVATIONS , 2001 .

[5]  Christopher J. Bishop,et al.  INTERPOLATING SEQUENCES FOR THE DIRICHLET SPACE AND ITS MULTIPLIERS , 1994 .

[6]  Ronald R. Coifman,et al.  COMMUTATORS ON THE POTENTIAL-THEORETIC ENERGY SPACES , 1988 .

[7]  Ronald R. Coifman,et al.  Factorization theorems for Hardy spaces in several variables , 1976 .

[8]  Zhijian Wu The Predual and Second Predual of Wa , 1993 .

[9]  S. Janson,et al.  Hankel Forms and the Fock Space. , 1987 .

[10]  Hankel operators on the Bergman space of bounded symmetric domains , 1991 .

[11]  L. Hedberg,et al.  Function Spaces and Potential Theory , 1995 .

[12]  Z. Nehari On Bounded Bilinear Forms , 1957 .

[13]  A. G. O'Farrell,et al.  FUNCTION SPACES AND POTENTIAL THEORY (Grundlehren der mathematischen Wissenschaften 314) By David R. Adams and Lars Inge Hedberg: 366 pp., DM.148., ISBN 3 540 57060 8 (Springer, 1996) , 1997 .

[14]  Richard Rochberg,et al.  Carleson measures for analytic Besov spaces , 2002 .

[15]  Kehe Zhu,et al.  Spaces of Holomorphic Functions in the Unit Ball , 2005 .

[16]  Richard Rochberg,et al.  A new characterization of Dirichlet type spaces and applications , 1993 .

[17]  ONTO INTERPOLATING SEQUENCES FOR THE DIRICHLET SPACE , 2008, 1605.02730.

[18]  Hankel Operators in Several Complex Variables and Product $BMO\zProd$ , 2003, math/0310348.

[19]  Igor E. Verbitsky,et al.  The Schrödinger operator on the energy space: boundedness and compactness criteria , 2002 .

[20]  V. Peller Hankel Operators and Their Applications , 2003, IEEE Transactions on Automatic Control.

[21]  Bjarte Böe Interpolating Sequences for Besov Spaces , 2002 .