Fungal pretreatment of sulfides in refractory gold ores

[1]  M. Silver Oxidation of elemental sulfur and sulfur compounds and CO2 fixation by Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans). , 1970, Canadian journal of microbiology.

[2]  S. Ushioda Raman scattering from phonons in iron pyrite (FeS2) , 1972 .

[3]  R. J. Helfinstine,et al.  Determination of Forms of Sulfur in Coal , 1977 .

[4]  J. Zeikus,et al.  Ligninolytic enzyme system of Phanaerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation , 1978, Journal of bacteriology.

[5]  M. Silver,et al.  Ore leaching by bacteria. , 1980, Annual review of microbiology.

[6]  R. W. Boyle,et al.  The Geochemistry of Gold and Its Deposits , 1980 .

[7]  L E Murr,et al.  Acid‐bacterial and ferric sulfate leaching of pyrite single crystals , 1982, Biotechnology and bioengineering.

[8]  M. Kuwahara,et al.  An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. , 1983, Biochemical and biophysical research communications.

[9]  M. Tien,et al.  Lignin-Degrading Enzyme from the Hymenomycete Phanerochaete chrysosporium Burds , 1983, Science.

[10]  V. Kudryk,et al.  Precious metals : mining, extraction, and processing , 1984 .

[11]  H. Barnes,et al.  Oxidation of pyrite in low temperature acidic solutions: Rate laws and surface textures , 1986 .

[12]  M. Tien,et al.  Lignin peroxidase of Phanerochaete chrysosporium , 1988 .

[13]  M. Tien,et al.  Oxidation of Thianthrene by the Ligninase of Phanerochaete chrysosporium , 1988, Applied and environmental microbiology.

[14]  S. Hutchins Microbial Pretreatment of Refractory Sulfide and Carbonaceous Ores Improves the Economics of Gold Recovery. , 1988 .

[15]  F. O. Simon,et al.  Methods for sampling and inorganic analysis of coal , 1989 .

[16]  F. D. Pooley,et al.  Mineralogical characteristics and treatment of refractory gold ores , 1989 .

[17]  J. C. Yannopoulos,et al.  The extractive metallurgy of gold , 1990 .

[18]  F. Kargı,et al.  Bioprocess Engineering: Basic Concepts , 1991 .

[19]  O. Tuovinen,et al.  Bacterial Oxidation of Refractory Sulfide Ores for Gold Recovery , 1992 .

[20]  Application of pressure oxidation pretreatment to a double-refractory gold concentrate , 1992 .

[21]  T. Mernagh,et al.  A laser Raman microprobe study of some geologically important sulphide minerals , 1993 .

[22]  K. Osseo-asare,et al.  Kinetics of pyrite oxidation in sodium carbonate solutions , 1995 .

[23]  M. Tsunekawa,et al.  Confirmation of a sulfur-rich layer on pyrite after oxidative dissolution by Fe(lIl) ions around pH2 , 1995 .

[24]  M. Madigan,et al.  Brock Biology of Microorganisms , 1996 .

[25]  D. Wei,et al.  Semiconductor Electrochemistry of Particulate Pyrite Mechanisms and Products of Dissolution , 1997 .

[26]  Corale L. Brierley,et al.  Mining Biotechnology: Research to Commercial Development and Beyond , 1997 .

[27]  M. Dimitrijević,et al.  Leaching of pyrite with hydrogen peroxide in sulphuric acid , 1997 .

[28]  Biological-mineralogical interactions , 1997 .

[29]  H. Tributsch,et al.  Reasons why 'Leptospirillum'-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. , 1999, Microbiology.

[30]  W. Inskeep,et al.  Acid production from sulfide minerals using hydrogen peroxide weathering , 2000 .

[31]  W. Sand,et al.  (Bio)chemistry of bacterial leaching - direct vs. indirect bioleaching , 2001 .

[32]  J. Brierley Response of microbial systems to thermal stress in biooxidation-heap pretreatment of refractory gold ores , 2003 .

[33]  D. Rawlings,et al.  Biomineralization of metal-containing ores and concentrates. , 2003, Trends in biotechnology.

[34]  Å. Sandström,et al.  A sequential two-step process using moderately and extremely thermophilic cultures for biooxidation of refractory gold concentrates , 2003 .

[35]  W. Sand,et al.  Bioleaching review part A: , 2003, Applied Microbiology and Biotechnology.

[36]  B. Escobar,et al.  Arsenic precipitation in the bioleaching of enargite by Sulfolobus BC at 70 °C , 2000, Biotechnology Letters.

[37]  J. Ramsay,et al.  A two-stage bacterial pretreatment process for double refractory gold ores , 2005 .

[38]  S. Yaghmaei,et al.  Influence of process variables on biooxidation of ferrous sulfate by an indigenous Acidithiobacillus ferrooxidans. Part II: Bioreactor experiments , 2006 .

[39]  J. Marsden,et al.  The chemistry of gold extraction , 1992 .

[40]  P. Marion,et al.  Gold-bearing arsenopyrite and pyrite in refractory ores: analytical refinements and new understanding of gold mineralogy , 2007, Mineralogical Magazine.

[41]  SIMULTANEOUS BIOTRANSFORMATION OF CARBONACEOUS MATTER AND SULFIDES IN DOUBLE REFRACTORY GOLD ORES USING THE FUNGUS, PHANEROCHAETE CHRYSOSPORIUM , 2010 .

[42]  G. Ofori-Sarpong,et al.  Myco-hydrometallurgy: Coal model for potential reduction of preg-robbing capacity of carbonaceous gold ores using the fungus, Phanerochaete chrysosporium , 2010 .