Ranking and unranking fixed-density necklaces and Lyndon words
暂无分享,去创建一个
[1] Carla D. Savage,et al. A Gray Code for Necklaces of Fixed Density , 1995, SIAM J. Discret. Math..
[2] E. Gilbert,et al. Symmetry types of periodic sequences , 1961 .
[3] Joe Sawada,et al. Practical algorithms to rank necklaces, Lyndon words, and de Bruijn sequences , 2017, J. Discrete Algorithms.
[4] Takao Ueda,et al. Gray codes for necklaces , 2000, Discret. Math..
[5] Frank Ruskey,et al. An efficient algorithm for generating necklaces with fixed density , 1999, SODA '99.
[6] Michael E. Saks,et al. Efficient Indexing of Necklaces and Irreducible Polynomials over Finite Fields , 2014, Theory Comput..
[7] Kellogg S. Booth,et al. Lexicographically Least Circular Substrings , 1980, Inf. Process. Lett..
[8] Wojciech Rytter,et al. Efficient Ranking of Lyndon Words and Decoding Lexicographically Minimal de Bruijn Sequence , 2015, SIAM J. Discret. Math..
[9] Joe Sawada,et al. A Gray code for fixed-density necklaces and Lyndon words in constant amortized time , 2013, Theor. Comput. Sci..
[10] Ronald L. Graham,et al. Concrete Mathematics, a Foundation for Computer Science , 1991, The Mathematical Gazette.